コンピュータビジョンの戦場:チャンピオンを選ぶ

美と流行のエキスパートが語る、コンピュータビジョンの戦場:チャンピオンを選ぶ

どれが最高のコンピュータービジョンモデルですか?どれが特定のタスクに最適ですか?

GR Stocksによる写真 Unsplash

転移学習はコンピュータービジョンを変えましたが、まだ多くの未解決の問題があります。例えば、最高のアーキテクチャは何ですか?どれが特定のタスクに最適ですか?すべての記事が最先端の状態であると主張していますが、本当でしょうか?ここでは、ある研究が実証的にこれを明らかにし、人工知能の実践者がする実用的な質問に答えています。

コンピュータービジョンのパラダイム

Mika Matinによる写真 Unsplash

コンピュータービジョンの主流のパラダイムは、システムがバックボーン(特徴抽出ネットワーク)と、タスクに特化した頭部から構成されるというものです。バックボーンは、オブジェクト検出や位置特定のための特徴の配列、または分類や画像検索などのタスクに対して単純なベクトルを生成することができます。

理論上、バックボーンはタスクに特化して訓練することも可能ですが、一般的には大量の画像で訓練され、最大限にタスクに特化したデータセットで微調整されます。

転移学習の例。画像の出典:こちら

このアプローチは転移学習と呼ばれ、多くの利点を持っているため、これまで支配的なものでした。多くのタスクで最先端の成果を達成しています。タスク固有のデータが必要とされる量を減らすことができます。事前トレーニングデータセットには異なるドメインの画像が含まれているため、アプローチはダウンストリームタスクに対してより堅牢です。

初期のシステムでは、モデルはImageNetで訓練され、その後特定のタスクドメイン(例:ResNetまたはVGG)に微調整されていました。しかし今日では、多くのデータセットとアーキテクチャが存在します。そのため、最終的な結果には主に3つの要素が影響します:アーキテクチャ、事前トレーニングアルゴリズム、事前トレーニングデータセット

選択肢が非常に多いため、どれが最適かを選ぶにはどうすればよいですか?

バックボーンの戦い

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

グラフ、分析、そして生成AI グラフニュースレターの年

グラフ、分析、および生成AIグラフとAIが結びつくさまざまな方法と、業界と研究のニュースについての説明

機械学習

GPT-4の主な6つの利用事例

GPT-4の画期的な応用を、コンテンツ制作から医療に至るまで、さまざまな業界で探求してください6つのユースケースでAIの変革...

AI研究

マイクロソフトAI研究は、分子システムの平衡分布を予測するためにDistributional Graphormer(DiG)という新しいディープラーニングフレームワークを紹介しました

分子の構造はその性質と機能を決定します。そのため、構造予測は分子科学における重要な問題です。アミノ酸配列からタンパク...

AIニュース

スポティファイはAIを取り入れる:個人に合わせたプレイリストからオーディオ広告まで

人気のある音楽ストリーミングプラットフォームであるSpotifyは、常にユーザーエクスペリエンスを向上させる方法を探求する技...

機械学習

「なんでもセグメント:任意のオブジェクトのセグメンテーションを促す」

今日の論文解説はビジュアルになります!私たちはMetaのAI研究チームによる論文「Segment Anything」を分析しますこの論文は...

データサイエンス

「機械学習と人工知能を利用した在庫管理の改善」

「人工知能(AI)は在庫管理システムの効果を大幅に向上させることができます需要予測をサポートし、在庫レベルを最適化し、...