コンピュータビジョンの戦場:チャンピオンを選ぶ

美と流行のエキスパートが語る、コンピュータビジョンの戦場:チャンピオンを選ぶ

どれが最高のコンピュータービジョンモデルですか?どれが特定のタスクに最適ですか?

GR Stocksによる写真 Unsplash

転移学習はコンピュータービジョンを変えましたが、まだ多くの未解決の問題があります。例えば、最高のアーキテクチャは何ですか?どれが特定のタスクに最適ですか?すべての記事が最先端の状態であると主張していますが、本当でしょうか?ここでは、ある研究が実証的にこれを明らかにし、人工知能の実践者がする実用的な質問に答えています。

コンピュータービジョンのパラダイム

Mika Matinによる写真 Unsplash

コンピュータービジョンの主流のパラダイムは、システムがバックボーン(特徴抽出ネットワーク)と、タスクに特化した頭部から構成されるというものです。バックボーンは、オブジェクト検出や位置特定のための特徴の配列、または分類や画像検索などのタスクに対して単純なベクトルを生成することができます。

理論上、バックボーンはタスクに特化して訓練することも可能ですが、一般的には大量の画像で訓練され、最大限にタスクに特化したデータセットで微調整されます。

転移学習の例。画像の出典:こちら

このアプローチは転移学習と呼ばれ、多くの利点を持っているため、これまで支配的なものでした。多くのタスクで最先端の成果を達成しています。タスク固有のデータが必要とされる量を減らすことができます。事前トレーニングデータセットには異なるドメインの画像が含まれているため、アプローチはダウンストリームタスクに対してより堅牢です。

初期のシステムでは、モデルはImageNetで訓練され、その後特定のタスクドメイン(例:ResNetまたはVGG)に微調整されていました。しかし今日では、多くのデータセットとアーキテクチャが存在します。そのため、最終的な結果には主に3つの要素が影響します:アーキテクチャ、事前トレーニングアルゴリズム、事前トレーニングデータセット

選択肢が非常に多いため、どれが最適かを選ぶにはどうすればよいですか?

バックボーンの戦い

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「OceanBaseを使用して、ゼロからLangchainの代替を作成する」

「オーシャンベースとAIの統合からモデルのトレーニングやチャットボットの作成まで、興味深い旅を通じてこのトピックを探求...

データサイエンス

データセットシフトのフレームワークを整理する

私たちはモデルを訓練し、それらを使用して特定の結果を予測します入力のセットが与えられた場合に、それが機械学習のゲーム...

機械学習

ベイズ深層学習への優しい入門

「確率的プログラミングの興奮する世界へようこそ!この記事は初心者向けのベイズ深層学習とディープニューラルネットワーク...

データサイエンス

生成AI:シームレスなデータ転送のための倫理的かつ創造的なイノベーション

この記事は、データエンリッチメントにおける生成AIの変革的な影響について掘り下げ、より正確な洞察と意思決定を促進します

機械学習

テキスト生成の評価におけるベクトル化されたBERTScoreのビジュアルガイド

『AIベースのテキスト生成は明らかに主流に入ってきています自動化されたライティングアシスタントから法的文書の生成、マー...

人工知能

「AIがまだすぐには置き換えられない8つの仕事」

皆がAIが代替する仕事について話していますが、私たちはコインの裏側、つまりAIがまもなく置き換えないであろう仕事に目を向...