Learn more about Search Results GR Stocks
- You may be interested
- 「クロード2の探索:アントロピックの次世...
- データ分析におけるサンプリング技術
- 「リソース制約のあるアプリケーションに...
- MLモデルのDocker化:デプロイメントガイド
- スターリング-7B AIフィードバックからの...
- 音楽の探索の未来:検索対生成
- アリババAI研究所が提案する「Composer」...
- ロボ犬が100メートル走のギネス世界記録を...
- SalesForceはEinstein StudioとBring Your...
- 「DiffPoseTalk(デフポーズトーク)をご...
- マシンラーニングと最適化アルゴリズムの...
- 「MLOpsの考え方:常に本番準備完了」
- 「5層データスタックの構築方法」
- インターネット上でのディープラーニング...
- SlackメッセージのLLM微調整
コンピュータビジョンの戦場:チャンピオンを選ぶ
転移学習はコンピュータビジョンを変えましたが、まだ多くの未解決な問いが残っています例えば、最も優れたアーキテクチャは何ですか?どれが特定のタスクに最適ですか?全ての記事が最先端の技術であると主張していますが...
2024年にフォローするべきデータサイエンスのトップ12リーダー
データサイエンスの広がりを見据えると、2024年の到来は、革新を牽引し、分析の未来を形作る一握りの著名人にスポットライトを当てる重要な瞬間として迎えられます。『Top 12 Data Science Leaders List』は、これらの個人の卓越した専門知識、先見のリーダーシップ、および分野への重要な貢献を称えるビーコンとして機能します。私たちは、これらの画期的なマインドの物語、プロジェクト、そして先見の見通しをナビゲートしながら、データサイエンスの進路を形作ると約束された航跡を探求します。これらの模範的なリーダーたちは単なるパイオニアにとどまることはありません。彼らは無類のイノベーションと発見の時代へと私たちを導く先駆者そのものです。 2024年に注目すべきトップ12データサイエンスリーダーリスト 2024年への接近とともに、データサイエンスにおいて傑出した専門知識、リーダーシップ、注目すべき貢献を示す特異なグループの人々に焦点を当てています。『Top 12 Data Science Leaders List』は、これらの個人を認識し、注目することで、彼らを思想リーダー、イノベーター、およびインフルエンサーとして認め、来年重要なマイルストーンを達成することが予想されます。 さらに詳細に突入すると、これらの個人の視点、事業、イニシアチブが、さまざまなセクターを横断する複雑な課題に対するメソッドとデータの活用方法を変革することが明らかになります。予測分析の進展、倫理的なAIの実践の促進、または先進的なアルゴリズムの開発など、このリストでハイライトされた個人たちが2024年にデータサイエンスの領域に影響を与えることが期待されています。 1. Anndrew Ng 「AIのゲームにおいて、適切なビジネスコンテキストを見つけることが非常に重要です。私はテクノロジーが大好きです。それは多くの機会を提供します。しかし結局のところ、テクノロジーはコンテクスト化され、ビジネスユースケースに収まる必要があります。」 Dr. アンドリュー・エングは、機械学習(ML)と人工知能(AI)の専門知識を持つ英米のコンピュータ科学者です。AIの開発への貢献について語っている彼は、DeepLearning.AIの創設者であり、Landing AIの創設者兼CEO、AI Fundのゼネラルパートナー、およびスタンフォード大学コンピュータサイエンス学科の客員教授でもあります。さらに、彼はGoogle AIの傘下にある深層学習人工知能研究チームの創設リードでありました。また、彼はBaiduのチーフサイエンティストとして、1300人のAIグループの指導や会社のAIグローバル戦略の開発にも携わりました。 アンドリュー・エング氏は、スタンフォード大学でMOOC(大規模オープンオンラインコース)の開発をリードしました。また、Courseraを創設し、10万人以上の学生に機械学習のコースを提供しました。MLとオンライン教育の先駆者である彼は、カーネギーメロン大学、MIT、カリフォルニア大学バークレー校の学位を保持しています。さらに、彼はML、ロボット工学、関連する分野で200以上の研究論文の共著者であり、Tiime誌の世界で最も影響力のある100人のリストに選ばれています。…
「OpenAIやLM Studioに頼らずにAutoGenを使用する方法」
イントロダクション OpenAIやLMスタジオに頼らずに、あなた自身のAIチームを作成する準備はできていますか?もはや銀行を荒らすことも、アプリをダウンロードすることもありません。llama-cpp-pythonの設定から、autogenフレームワークのヘルプを借りてローカルLLMのパワーを探求するまで。OpenAI APIに依存せず、Autogenのフルポテンシャルを引き出す準備をしましょう。 学習目標 詳細に入る前に、この記事の主な学習目標を概説しましょう: さまざまなAIライブラリとツールを評価・比較する方法を学ぶ。 llama-cpp-pythonがOpenAI APIの代替として提供できる方法を探索する。 2つの現実世界の使用例で獲得した知識を適用する: アルゴリズムメンターチームの構築と金融チャート生成の自動化。 AutoGenの改善されたユーザーエクスペリエンスを探索し、統合されたIPythonを通じて即時のコード実行結果を得る。 この記事はData Science Blogathonの一環として公開されました。 ツール紹介: llama-cpp-python、AutoGen、およびローカルLLM しかし、このテックツールキットの特別な点は何でしょうか? llama-cpp-pythonは、LLMAのような有名なモデルを含めて、ローカルでLLMを実行するためのゲートウェイです。コンピュータ上にAIのスーパースターがいるようなもので、さまざまなBLASバックエンドのサポートにより、速度は驚異的です! AutoGen AutoGenは、基盤モデルを使用するための高レベルな抽象化として機能する統一されたマルチエージェント会話フレームワークです。LLM、ツール、および人間の参加者を統合し、自動化されたチャットを通じて能力のある、カスタマイズ可能で会話形式のエージェントを結合します。エージェント同士が自律的にコミュニケーションして共同作業を行うことができ、複雑なタスクを効率的に進めることやワークフローを自動化することが可能です。 もしAutoGenの機能をより深く探求し、戦略的なAIチームビルディングをどのように支援するかを調べることに興味があるなら、当社の専用ブログ「Strategic AI Team Building…
リアルタイムなSlackボットを生成的AIで構築する
「Apache NiFi、LLM、Foundation Models、およびストリーミングを使用して、クールなSlackbotを構築する方法を学びましょうモデルの選択肢と統合についても取り上げます」
「言語復興のための生成型AI」
はじめに 言語は単なるコミュニケーション手段ではなく、文化、アイデンティティ、遺産の保管庫でもあります。しかし、多くの言語が絶滅の危機に直面しています。言語の再活性化は、このトレンドを逆転させることを目指し、生成AIがこの取り組みにおいて強力なツールとなっています。 言語の再活性化は、絶滅危惧種の言語や文化遺産を保存するために不可欠です。生成AIは、その自然言語処理の機能を活用して、この使命に大きく貢献することができます。このガイドでは、以下について探求します: 言語再活性化のための生成AIの使い方 実践的なPythonの実装 音声合成、テキスト生成、評価の学び この記事は、データサイエンスブログマラソンの一環として公開されました。 言語再活性化の理解 言語再活性化は、絶滅または休眠状態にある言語を復活するための取り組みを指します。言語の文書化、教育、言語リソースの作成などを包括します。 AI言語再活性化の理解には、人工知能が絶滅危惧種の言語を保存および再活性化するための変革的な潜在能力を認識することが含まれます。特にGPT-3のような自然言語処理(NLP)モデルのように、AIシステムは言語を理解し、生成し、翻訳することができるため、それらは文書化や伝達危機にある言語の教育において非常に貴重なツールとなっています。これらのAI駆動の取り組みにより、大規模な言語コーパスの作成、自動翻訳サービスの提供、さらには対話形式の言語学習アプリケーションの作成が可能となり、言語再活性化がよりアクセスしやすくなります。 さらに、AIは文化に配慮したコンテンツの作成にも貢献することができ、言語と遺産とのより深いつながりを育むことができます。AI言語再活性化における微妙な課題と機会を理解することで、関係者は技術を活用して言語のギャップを埋め、若い世代を巻き込み、これらの言語が繁栄することを保証することができます。 最終的には、AI言語再活性化は、言語学者、コミュニティ、技術者が協力して言語の多様性を守り、絶滅危惧種の言語によってエンコードされた人類の文化の豊かな織物を保存するための多様な取り組みとなります。 生成AIと自然言語処理 深層学習によって推進される生成AIは、人間のようなテキストの理解と生成が可能です。自然言語処理(NLP)は、コンピュータが人間の言語を理解、解釈、生成するための技術に焦点を当てています。 言語コーパスの構築 生成AIを適用する前に、十分な言語データセットが必要です。このセクションでは、AIアプリケーションのために言語データを収集、整理、前処理する方法について説明します。 PythonとGPT-3によるテキスト生成 OpenAIのGPT-3は、人間のようなテキストを生成するパワフルな言語モデルです。OpenAI APIのセットアップ方法と、対象言語でテキストを生成するためのPythonの実装を案内します。 # PythonコードによるGPT-3を使ったテキスト生成import openai# OpenAI APIキーのセットアップapi_key…
AWSにおける生成AIとマルチモーダルエージェント:金融市場における新たな価値を開拓するための鍵
マルチモーダルデータは、市場、経済、顧客、ニュースおよびソーシャルメディア、リスクデータを含む、金融業界の貴重な要素です金融機関はこのデータを生成し、収集し、利用して、金融業務の洞察を得たり、より良い意思決定を行ったり、パフォーマンスを向上させたりしますしかし、マルチモーダルデータには複雑さと不足に起因する課題があります
ビッグテックと生成AI:ビッグテックが生成AIを制御するのか?
「ビッグテックと生成AIの深まる関係を探求する:これらの巨人はセクターを支配するのか、それともバランスの取れたAIの景観が生み出されるのか?データ、力、イノベーションの相互作用にダイブしてください」
GPUを活用した特徴量エンジニアリングにおいてRAPIDS cuDFを使用する
Google Colabと統合し、データフレームの作成と特徴量エンジニアリングにおいて、cuDFにPandasを置き換えることでパフォーマンスを向上させる
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.