「小規模言語モデルにおける意図の調整の解除:Zephyr-7Bの突破を目指した、蒸留された教師あり微調整とAIフィードバックの包括的ガイド」

「美とファッションの専門家が教える:美しさとファッションの世界で蒸留された教師あり微調整とAIフィードバックを活用した小規模言語モデルの意図の調整解除ガイド」

ZEPHYR-7Bは、AIフィードバック(AIF)データを使用した蒸留直接好み最適化(dDPO)を通じてユーザーの意図整合性に最適化された、小型の言語モデルです。この手法は、人間の注釈なしで意図の整列を効果的に向上させ、7Bパラメータモデルのトップパフォーマンスを実現します。この手法はAIFからの好みデータに依存し、トレーニング時間を最小限に抑え、ファインチューニング中の追加サンプリングは必要ありません。これにより、新たな最先端を樹立しています。

研究者は、ChatGPTなどのLLMの普及と、その派生モデルであるLLaMA、MPT、RedPajama-INCITE、Falcon、Llama 2に取り組んでいます。ファインチューニング、コンテキスト、検索補完生成、および量子化の進歩が強調されています。より小さいモデルのパフォーマンスを向上させるための蒸留技術、モデル評価のツールとベンチマークも議論されています。この研究では、ZEPHYR-7BのパフォーマンスをMTBench、AlpacaEval、HuggingFace Open LLM Leaderboardで評価しています。

この研究では、精度とユーザーの意図の整列を向上させるために、蒸留教師付きファインチューニング(dSFT)を使用した、より小型のオープンLLMの強化方法について検討しています。それは、人間の注釈なしでLLMを整列させるためにdDPOを導入し、教師モデルからのAIFに頼っています。研究者は、dSFT、AIFデータ、およびdDPOを介したMistral-7Bの整列版であるZEPHYR-7Bを紹介し、人間のフィードバックに整列した70Bパラメーターのチャットモデルと同等のパフォーマンスを示しています。この研究は、LLM開発における意図の整列の重要性を強調しています。

この手法では、モデルを高品質のデータでトレーニングするためにdSFTを組み合わせ、応答の好みを最適化するためにdDPOを利用して言語モデルを強化する方法が提案されています。教師モデルからのAIFを使用してユーザーの意図との整列性を改善します。このプロセスでは反復的なセルフプロンプティングを使用してトレーニングデータセットを生成します。その結果得られたZEPHYR-7Bモデルは、dSFT、AIFデータ、およびdDPOを介して達成され、改善された意図の整列性を持つ最先端のチャットモデルを表しています。

7BパラメータモデルであるZEPHYR-7Bは、オープンアクセスのRLHFベースモデルであるLLAMA2-CHAT-70Bを超えて、チャットのベンチマークで新たな最先端を確立しています。AlpacaEvalではGPT-3.5-TURBOとCLAUDE 2と競り合っていますが、数学やコーディングのタスクでは遅れています。7Bモデルの中で、dDPOモデルは優れており、dSFTとXwin-LM dPPOを上回っています。ただし、より大きなモデルは知識集約型のタスクでZEPHYRを上回っています。Open LLM Leaderboardでの評価では、ZEPHYRの多クラス分類タスクにおける強さが示され、ファインチューニング後の思考力と真実性の能力が確認されています。

ZEPHYR-7Bは、意図の整列性を高めるために直接好み最適化を採用しています。この研究は、評価者としてGPT-4を使用する際の潜在的なバイアスを強調し、ユーザーの意図との整列性に対するより小さいオープンモデルの能力を探求することを推奨しています。有害な出力や違法な助言などの安全性に関する考慮事項の欠落について指摘し、この重要な領域における今後の研究の必要性を示しています。

この研究では、将来の研究のいくつかの展望が明らかにされています。有害な出力や違法なアドバイスに対する安全性の考慮事項は、まだ探求されていません。より大きな教師モデルが学生モデルのパフォーマンス向上にどのような影響を与えるかを調査することが提案されています。蒸留における合成データの使用は困難ですが、価値ある研究領域として認識されています。ユーザーの意図に合わせるためのより小さいオープンモデルとその能力のさらなる探求は、可能な進歩を目指しており、広範なベンチマークとタスクでZEPHYR-7Bの能力を包括的に評価することが推奨されています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

AIの時代のコーディング:ChatGPTの役割と次世代プログラミング

ChatGPTはデジタルの世界を変えつつあり、プログラミングも例外ではありませんプログラマーにどのように助けられ、コーディン...

機械学習

「ヘルスケアとゲノミクス産業が機械学習とAIで革新する方法」

AIと機械学習は医療研究のやり方を変えつつありますAIが薬剤探索、ゲノミクス、およびタンパク質の折りたたみに革新をもたら...

人工知能

「キャリアを将来に備えるための最高の無料AIコース」

今日から受講できる最高の無料AIコースのうち、8つをご紹介します

人工知能

「ディープマインドのアルファコードの力を解き放つ:コードライティングの革命」

導入 プログラミングの常に進化し続ける世界では、先を行くことが成功への鍵です。DeepMindのAlphaCodeは、革新的なAIパワー...

機械学習

オラクルは、AIとクラウドを基盤とした未来のビジョンを明らかにしました

ラリー・エリソンは、生成的AIが変革的であり、エンタープライズAIアプリケーションの構築におけるOracle Cloudの独特な利点...

人工知能

スタビリティAIの危機 - CEOの論争の中で主要メンバーが辞任!

ロンドンを拠点とするスタートアップ企業であるStability AI Ltd. はかつて画期的なStable Diffusion AIモデルでテック界を驚...