「You.comがYouRetrieverをリリース:You.comの検索APIへの最もシンプルなインターフェース」
「You.comがYouRetrieverをリリース:You.comの検索APIへのシンプルなインターフェース」
You.comは、You.com Search APIへの最もシンプルなインターフェースであるYouRetrieverをリリースしました。 You.com Search APIは、RAG(Retrieval Augmented Generation)アプリケーションを考慮してLLMs向けに開発されました。彼らは、APIをさまざまなデータセットでテストして、LLMのRAG-QA環境での効率を確立するための基準を確立しました。また、You.com Search APIとGoogle Search APIの違いと類似点を詳細に分析しました。彼らは、RAG-QA環境でLLMを評価するためのフレームワークを提供しました。彼らは、レトリーバーがHotpot QAでどれだけうまく機能するかを評価するために、RetrievalQA Chainを使用しました。Hotpotデータセットには、クエリ、回答、およびその文脈が含まれています。LLMが意図的に誤った言語に騙されないようにするための「distractor」モードを使用する場合、文脈は質問/回答に応じて変更されることがあります。テストの1つでは、データセットの元の文脈を検索APIが返すテキストの断片で置き換えるというものでした。情報を検索するため、APIはデータセットで提供されるスニペットのリストだけに頼るのではなく、インターネット全体を検索します。したがって、この場合、インターネットは分散させるテキストとしての役割を果たします。LLMと検索APIの効果をテストする際、彼らはシステムを「ウェブディストラクター」シナリオと呼んでいます。
可能な限り、より充実した情報の断片を返します。また、近々、返されるテキストの量を単一のサンプルから完全なページまで選択できるようになります。デフォルトのパラメータを使用すると、” great Keith”の27の結果があり、一部の文書には一部の内容が含まれています。RAG-QA環境で作業するLLMにとって、当社の検索APIは特に便利です。
彼らはHotPotQAデータセット上でテストを行いました。この情報をHuggingfaceデータセットから取得するために、彼らはdatasetsライブラリを使用しています。ここでは、分散者の代わりにフルウィキを使用していますが、先に述べたように、彼らは検索APIを利用して自分たちの文脈を生成します。
- 「LLMsにおけるエンタープライズ知識グラフの役割」
- (sekai no toppu 10 no sōsei AI sutātappu)
- サイバー犯罪の推進者’ (Saibā hanzai no suishinsha)
設定するための詳細な手順については、https://documentation.you.com/openai-language-model-integrationをご覧ください。
You.comは近々、より広範な検索調査を公開する予定ですので、情報をお楽しみに。アーリーアクセスパートナーになりたい方は、[email protected]に自己紹介、ユースケース、および予想される毎日のコール数に関する情報を書いてください。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles