XGBoost 最終ガイド(パート1)

XGBoost 最終ガイド(パート1)

Photo by Sam Battaglieri on Unsplash

XGBoost(eXtreme Gradient Boostingの略)は、勾配ブースティング決定木の最適化された拡張可能な実装を提供するオープンソースのライブラリです。さまざまなソフトウェアおよびハードウェアの最適化技術を組み込んでおり、大量のデータに対処することができます。

XGBoostは、Tianqi ChenとCarlos Guestrinによって2016年に研究プロジェクトとして開発されました[1]。XGBoostは、構造化(表形式)データ上の教師あり学習タスクを解決するためのソリューションとして広く使用されています。多くの標準的な回帰および分類タスクで最先端の結果を提供し、多くのKaggleコンペティションの勝者は、勝利のソリューションの一部としてXGBoostを使用しています。

表形式のデータに対しては、深層ニューラルネットワークを使用しても大きな進歩がなされていますが、多くの標準ベンチマークではXGBoostや他のツリーベースのモデルにまだ劣っています[2, 3]。さらに、XGBoostはディープモデルよりもチューニングが少なくて済みます。

XGBoostの主なイノベーションは次のとおりです:

  1. 決定木の巧妙な正則化。
  2. 目的関数の最適化のための2次近似(Newtonブースティング)。
  3. 効率的な計算のための加重分位数スケッチ手順。
  4. 疎なデータを処理するための新しいツリー学習アルゴリズム。
  5. データの並列および分散処理のサポート。
  6. 外部メモリでのツリー学習のためのキャッシュアウェアブロック構造。

このシリーズの記事では、XGBoostを詳しく説明します。アルゴリズムの数学的な詳細、Pythonでのアルゴリズムの実装、XGBoostライブラリの概要、および実際の使用方法についても説明します。

このシリーズの初めの記事では、XGBoostアルゴリズムのステップバイステップの導出、疑似コードによるアルゴリズムの実装、そしておもちゃのデータセット上での動作の説明を行います。

この記事で説明されているアルゴリズムの説明は、XGBoostのオリジナル論文[1]と…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

『ジュリエット・パウエル&アート・クライナー、The AI Dilemma – インタビューシリーズの著者』

『AIのジレンマ』は、ジュリエット・パウエルとアート・クライナーによって書かれましたジュリエット・パウエルは、著者であ...

人工知能

「LeanTaaSの創設者兼CEO、モハン・ギリダラダスによるインタビューシリーズ」

モーハン・ギリダラダスは、AIを活用したSaaSベースのキャパシティ管理、スタッフ配置、患者フローのソフトウェアを提供する...

データサイエンス

2023年にAmazonのデータサイエンティストになる方法は?

ほとんどのビジネスは現在、膨大な量のデータを生成し、編集し、管理しています。しかし、ほとんどのビジネスは、収集したデ...

データサイエンス

「2023年にデータサイエンスFAANGの仕事をゲットする方法は?」

データサイエンスは非常に求められる分野となり、FAANG(Facebook、Amazon、Apple、Netflix、Google)企業での就職は大きな成...

AIテクノロジー

アンソニー・グーネティレケ氏は、Amdocsのグループ社長であり、テクノロジー部門および戦略部門の責任者です- インタビューシリーズ

アンソニー・グーネティレーケは、Amdocsでグループ社長、テクノロジーと戦略担当です彼と企業戦略チームは、会社の戦略を策...

人工知能

「Ntropyの共同創設者兼CEO、ナレ・ヴァルダニアンについて - インタビューシリーズ」

「Ntropyの共同創設者兼CEOであるナレ・ヴァルダニアンは、超人的な精度で100ミリ秒以下で金融取引を解析することを可能にす...