XGBoost 最終ガイド(パート1)

XGBoost 最終ガイド(パート1)

Photo by Sam Battaglieri on Unsplash

XGBoost(eXtreme Gradient Boostingの略)は、勾配ブースティング決定木の最適化された拡張可能な実装を提供するオープンソースのライブラリです。さまざまなソフトウェアおよびハードウェアの最適化技術を組み込んでおり、大量のデータに対処することができます。

XGBoostは、Tianqi ChenとCarlos Guestrinによって2016年に研究プロジェクトとして開発されました[1]。XGBoostは、構造化(表形式)データ上の教師あり学習タスクを解決するためのソリューションとして広く使用されています。多くの標準的な回帰および分類タスクで最先端の結果を提供し、多くのKaggleコンペティションの勝者は、勝利のソリューションの一部としてXGBoostを使用しています。

表形式のデータに対しては、深層ニューラルネットワークを使用しても大きな進歩がなされていますが、多くの標準ベンチマークではXGBoostや他のツリーベースのモデルにまだ劣っています[2, 3]。さらに、XGBoostはディープモデルよりもチューニングが少なくて済みます。

XGBoostの主なイノベーションは次のとおりです:

  1. 決定木の巧妙な正則化。
  2. 目的関数の最適化のための2次近似(Newtonブースティング)。
  3. 効率的な計算のための加重分位数スケッチ手順。
  4. 疎なデータを処理するための新しいツリー学習アルゴリズム。
  5. データの並列および分散処理のサポート。
  6. 外部メモリでのツリー学習のためのキャッシュアウェアブロック構造。

このシリーズの記事では、XGBoostを詳しく説明します。アルゴリズムの数学的な詳細、Pythonでのアルゴリズムの実装、XGBoostライブラリの概要、および実際の使用方法についても説明します。

このシリーズの初めの記事では、XGBoostアルゴリズムのステップバイステップの導出、疑似コードによるアルゴリズムの実装、そしておもちゃのデータセット上での動作の説明を行います。

この記事で説明されているアルゴリズムの説明は、XGBoostのオリジナル論文[1]と…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

ファイデムのチーフ・プロダクト・オフィサー、アルパー・テキン-インタビューシリーズ

アルパー・テキンは、FindemというAI人材の獲得と管理プラットフォームの最高製品責任者(CPO)ですFindemのTalent Data Clou...

人工知能

アーティスの創設者兼CEO、ウィリアム・ウーによるインタビューシリーズ

ウィリアム・ウーは、Artisseの創設者兼CEOであり、ユーザーの好みに基づいて写真を精密に変更する技術を提供していますそれ...

人工知能

「コーネリスネットワークスのソフトウェアエンジニアリング担当副社長、ダグ・フラーラー氏 - インタビューシリーズ」

ソフトウェアエンジニアリングの副社長として、DougはCornelis Networksのソフトウェアスタック全体、Omni-Path Architecture...

AIテクノロジー

「LXTのテクノロジーバイスプレジデント、アムル・ヌール・エルディン - インタビューシリーズ」

アムル・ヌール・エルディンは、LXTのテクノロジー担当副社長ですアムルは、自動音声認識(ASR)の文脈での音声/音響処理と機...

人工知能

「マーク・A・レムリー教授による生成AIと法律について」

データサイエンス内で新しい分野が現れ、研究内容が理解しにくい場合は、専門家やパイオニアと話すことが最善です最近、私た...

人工知能

「Ntropyの共同創設者兼CEO、ナレ・ヴァルダニアンについて - インタビューシリーズ」

「Ntropyの共同創設者兼CEOであるナレ・ヴァルダニアンは、超人的な精度で100ミリ秒以下で金融取引を解析することを可能にす...