「ディープラーニングにおける転移学習とは何ですか?」

「ディープラーニングでの転移学習とは何ですか?」

事前訓練済みの機械学習とディープラーニングモデル

Arnold Franciscaによる写真

簡単に言うと、事前訓練済みのモデルとは、新しい異なるデータセット上で実行されるモデルを使用する技術のことです。その基本的なアイデアは、訓練済みモデルの知識を取り入れて、新しい関連するアプリケーションに適用することです。この技術は、コンピュータビジョンと自然言語処理(NLP)の分野で特に有用であり、意味情報を持つ大量のデータがあるためです。

ゼロからディープラーニングモデルを訓練する際の問題点は何ですか?

  1. 公開されていない場合、多くのラベル付きデータが必要であり、取得に時間と労力がかかります。
  2. 大規模なデータセット上でモデルを訓練するには、多くの時間がかかります。

大規模なデータでのモデル訓練を回避するための解決策

  • 事前訓練済みモデルを使用することができます。

事前訓練済みモデルとは、既に異なるカテゴリやクラスにわたるさまざまな大規模データセットで訓練されたモデルのことです。もし、入力データが事前訓練済みモデルのクラスと異なる場合でも、この問題を解決するために、転移学習の技術が重要な役割を果たします。

タイプに基づく事前訓練済みモデル:

  1. コンピュータビジョン用: VGG、ResNet、MobileNetなど
  2. NLP用: GPT-3/4、Bert、XLNet、T5など

転移学習の利点:

  1. モデル訓練時間を節約できます。
  2. ほとんどの場合、ANNよりも良い結果を得ることができます。
  3. 少量のデータで訓練することができます。

例:

  1. 例えば、ImageNet(1000クラス)で訓練されたVGG16アーキテクチャモデルを取り上げましょう。このモデルには畳み込み層と全結合層があります。畳み込み層は空間情報を捉えるために使用され、FC層はオブジェクトを分類するために使用されます。
  2. もし、私たちの分類がその1000クラスに含まれていない場合は、事前訓練済みモデルの畳み込み層を保持し、独自のベースとなる全結合層を追加します。これにより、以前訓練された知識が少量のデータに適用され、独自のベースとなる層で訓練されます。

転移学習はどのように機能するのでしょうか?

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

RecList 2.0 オープンソースによるMLモデルの体系的なテストシステム

評価は複雑な問題です評価パイプラインの作成に関与するさまざまなコンポーネントを管理することはしばしば困難ですモデルが...

人工知能

「自律AIエージェントを使用してタスクを自動化するための10の方法」

はじめに テクノロジーのダイナミックな風景の中で、自律型AIエージェントは変革的な存在として登場し、データと人工知能との...

機械学習

「会話型AIのLLM:よりスマートなチャットボットとアシスタントの構築」

イントロダクション 言語モデルは、技術と人間が自然な会話を行う魅力的なConversational AIの世界で中心的な役割を果たして...

AI研究

カールスルーエ工科大学(KIT)の研究者たちは、深層学習を用いた降水マッピングに取り組み、空間および時間の分解能向上に向けて進化させました

気候変動のため、特に激しい降水イベントがより頻繁に起こると予想されています。洪水や地滑りなどの多くの自然災害は、激し...

機械学習

「機械学習手法を用いたJava静的解析ツールレポートのトリアージに関する研究」

この研究では、最新の機械学習技術を利用して、Java静的解析ツールからの効果的な発見の選別について詳しく探求しています

AIニュース

ユーザーエクスペリエンスの向上:インタラクティブなチャットボットにOpenAIアシスタントAPIを実装する

イントロダクション OpenAIによるChatGPTとGPT 3モデルの導入により、世界はAIを統合したアプリケーションの使用にシフトしま...