「3D MRIとCTスキャンに使用するディープラーニングモデルは何ですか?」

What is the deep learning model used for 3D MRI and CT scans?

3D医用画像処理の問題を解決するための機械学習の使い方のガイド。

このような深い洞察力や、週のトップML論文、求人情報、実際の経験からのMLのヒント、研究者やビルダーからのMLのストーリーなど、さらに多くの情報を受け取るには、こちらのニュースレターに参加してください。

参加すると、以下の2つの特典があります:

  • 機械学習の求人市場で求められる知識を理解するためのMLジョブのチェックリスト。
  • コンピュータビジョンのための無料の4.5時間のTensorflow入門コースへのリンク。

はじめに

医用画像データを扱う際には、時にはその3Dの側面に対処する必要があります。

これは特にDICOMシリーズデータを扱う場合に当てはまります。このシナリオでは、スキャンまたは特定の体の一部を形成するいくつかのDICOMスライスがあります。

では、このタイプのデータに対してどのようにディープラーニングソリューションを構築するのでしょうか? この記事では、3D医療データ上でディープラーニングモデルを訓練するために使用できる6つのニューラルネットワークアーキテクチャを紹介します。

各ニューラルネットワークについて、コードと元の論文を共有するので、それらの動作をさらに深く理解することができます。

3D医療画像のためのディープラーニングモデル

3D U-Net:

U-Netアーキテクチャは、医療画像セグメンテーションのための強力なモデルです。 3D U-Netは、クラシックなU-Netモデルを3Dセグメンテーションに拡張したものです。 エンコーディング(ダウンサンプリング)パスとデコーディング(アップサンプリング)パスから構成されます。 エンコーディングパスは入力画像の文脈を捉え、デコーディングパスは正確な位置特定を可能にします。 3D U-Netは、体積画像の3Dの性質を非常に効果的に処理します。

コードはこちらで確認できます。

元の論文はこちらで読むことができます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「確信せよ、ただし検証せよ」

非決定的なソフトウェアの開発、テスト、および監視の課題を理解することこれは、可観測性のための新しいかつ重要な課題です ...

機械学習

「GANが人工的なセレブリティのアイデンティティを作り出す方法」

イントロダクション 人工知能の時代において、驚くべき現象が展開されています――生成対抗ネットワーク(GAN)が創造的に人工...

人工知能

画像をプロンプトに変換する方法:Img2Prompt AIモデルによるステップバイステップガイド

シンプルなAPIコールと少しのNode.jsで画像からプロンプトを収集する

機械学習

「加速、効率的なAIシステムの新しいクラスがスーパーコンピューティングの次の時代を示す」

エヌビディアは、今日のSC23で、科学や産業の研究センターを新たなパフォーマンスとエネルギー効率のレベルに引き上げる次世...

機械学習

安定した拡散 コミュニティのAI

「ステーブルディフュージョンAIは、革新的な技術により芸術界を革命化し、創造性を高め、芸術の評価を変えています」

AI研究

シリコンボレー:デザイナーがチップ支援のために生成AIを活用

今日公開された研究論文によれば、生成AIは、最も複雑なエンジニアリングプロジェクトの1つである半導体設計を支援できる方法...