私たちは、オープンかつ協力的な機械学習のために1億ドルを調達しました 🚀

We raised $100 million for open and collaborative machine learning 🚀.

今日は、素晴らしいニュースをお伝えします!Hugging Faceは、Lux CapitalをリードとするシリーズCの資金調達で1億ドルを調達しました🔥🔥🔥。Sequoia、Coatue、そして既存の投資家であるAddition、a_capital、SV Angel、Betaworks、AIX Ventures、Kevin Durant、Thirty Five VenturesのRich Kleiman、Datadogの共同設立者兼CEOであるOlivier Pomelなどが主要な出資者となっています。

2018年にPyTorch BERTをオープンソース化して以来、私たちは長い道のりを歩んできましたが、まだ始まったばかりです!🙌

機械学習は、技術を構築するためのデフォルトの方法になりつつあります。1日の平均を考えてみると、機械学習はあらゆるところにあります:Zoomの背景、Googleでの検索、Uberの利用、オートコンプリート機能を使用したメールの作成など、すべてが機械学習です。

Hugging Faceは、現在最も急成長しているコミュニティであり、機械学習のための最も使用されているプラットフォームです!自然言語処理、コンピュータビジョン、音声、時系列、生物学、強化学習、化学などのための100,000以上の事前学習モデルと10,000以上のデータセットをホストしており、Hugging Face Hubは、最先端のモデルを作成、共同作業、展開するための機械学習のホームとなっています。

10,000以上の企業がHugging Faceを使用して機械学習による技術を構築しています。彼らの機械学習科学者、データサイエンティスト、機械学習エンジニアは、私たちの製品とサービスの助けを借りて、数え切れないほどの時間を節約し、機械学習のロードマップを加速させています。

私たちはAI分野にポジティブな影響を与えたいと考えています。より責任あるAIの進展は、モデル、データセット、トレーニング手順、評価指標をオープンに共有し、問題を解決するために協力することを通じて実現されると考えています。オープンソースとオープンサイエンスは、信頼性、堅牢性、再現性、継続的なイノベーションをもたらします。これを念頭に、私たちはBigScienceをリードしています。これは、1,000人以上の研究者が集まり、非常に大きな言語モデルの研究と作成を行う協力的なワークショップです。そして、私たちは現在、世界最大のオープンソースの多言語言語モデルのトレーニングを行っています🌸

⚠️ しかし、まだ大量の作業が残されています。

Hugging Faceでは、機械学習にはバイアス、プライバシー、エネルギー消費などの重要な制約と課題があることを認識しています。オープンさ、透明性、協力を通じて、これらの課題を緩和するための責任ある包括的な進歩、理解、および説明責任を促進することができます。

新たな資金調達により、私たちは研究、オープンソース、製品、AIの責任ある民主化に注力していきます。

過去12ヶ月で30人から120人以上のチームメンバーに成長するまで、私たちは驚くべき成長を遂げました。Dr. Margaret MitchellやGradioチームなど、非常に才能のある(そして楽しい!)チームメイトが参加してくれたことは非常に幸運でしたが、ここで止まるつもりはありません。私たちはあらゆる職種、あらゆるレベルの経験に対応するための採用を行っています。私たちはリモートフレンドリーで分散型の組織であり、透明性と価値に基づく意思決定をデフォルトとしています。

私たちの素晴らしいコミュニティやチーム、お客様、パートナー、投資家のすべての貢献に感謝します。皆さんのおかげで、この地点に到達することができました。そして、これからも一緒に取り組めることを楽しみにしています。あなたの貢献は、オープンソース、オープンサイエンス、倫理と協力に基づくより良い未来を築くための鍵です。


報道関係のお問い合わせは、[email protected]までお問い合わせください。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「ChatGPTとBard AIを活用するために、ソフトウェア開発者はどのように役立つことができるのでしょうか?」

以前は、開発者はコードやデバッグに多くの時間を費やしていましたが、今ではChatGPTやBard AIのおかげで、ソフトウェアエン...

機械学習

「セマンティックカーネルへのPythonistaのイントロ」

ChatGPTのリリース以来、大規模言語モデル(LLM)は産業界とメディアの両方で非常に注目されており、これによりLLMを活用しよ...

データサイエンス

オラクルと一緒にXRを開発しよう、エピソード6 AIサマライザー+ジェネレーター

このチュートリアルでは、ユーザーの周囲からのさまざまな入力を使用し、それをAIで処理し、要約/生成AIを返すミックスドリア...

データサイエンス

チャットGPTの潜在能力を引き出すためのプロンプトエンジニアリングのマスタリング

プロンプトエンジニアリングは、ChatGPTやその他の大規模言語モデルのおかげで、風のように私たちの生活の一部にすぐになりま...

データサイエンス

PandasAIの紹介:GenAIを搭載したデータ分析ライブラリ

イントロダクション 最近、ジェネレーティブ人工知能の分野で急速な発展とブレークスルーがあり、データ分野においても大きな...

AI研究

ジュネーブ大学の研究者は、多剤耐性(MDR)腸内細菌感染の入院リスクを予測するためのグラフベースの機械学習モデルを調査しています

マシンラーニングは、医療で非常に重要なツールとして登場し、業界のさまざまな側面を革新しています。その主な応用の一つは...