「vLLMに会ってください:高速LLM推論とサービスのためのオープンソース機械学習ライブラリ」

vLLM Open-source ML library for fast LLM inference and services

大規模な言語モデル(LLM)は、プログラミングアシスタントやユニバーサルチャットボットなどの新しいアプリケーションを可能にするため、日常生活やキャリアにますます大きな影響を与えています。しかし、これらのアプリケーションの動作は、GPUなどの重要なハードウェアアクセラレータの要件による重要なコストがかかります。最近の研究によると、LLMのリクエストの処理は、従来のキーワード検索と比較して、10倍以上高価になることが示されています。そのため、LLMのサービングシステムのスループットを向上させ、リクエストごとの費用を最小限に抑える必要性が高まっています。

大規模な言語モデル(LLM)の高スループットなサービスを実行するには、一度に十分な数のリクエストをバッチ処理する必要があります。ただし、既存のシステムは支援が必要です。各リクエストのキーバリューキャッシュ(KVキャッシュ)メモリは非常に大きく、動的に成長および縮小する可能性があります。このメモリは慎重に管理する必要があります。効率的に管理されていない場合、断片化や冗長な重複により、このRAMを大幅に節約し、バッチサイズを減らすことができます。

研究者たちは、この問題の解決策として、オペレーティングシステムの伝統的な仮想メモリとページング技術に着想を得たアテンションアルゴリズム「PagedAttention」を提案しています。メモリの利用をさらに削減するために、研究者たちはvLLMも展開しています。このLLMサービスは、ほぼゼロのKVキャッシュメモリの無駄を生じず、リクエスト内およびリクエスト間でのKVキャッシュの柔軟な共有を提供します。

vLLMは、PagedAttentionを使用してアテンションキーとバリューを管理します。モデルアーキテクチャの変更を必要とせずに、HuggingFace Transformersよりも最大24倍のスループットを提供するvLLMは、LLMサービスの現在の最先端を再定義します。

従来のアテンションアルゴリズムとは異なり、PagedAttentionでは、連続したメモリ空間にキーと値を格納することができます。PagedAttentionは、各シーケンスのKVキャッシュをブロックに分割し、予め定められたトークンの数に対応するキーと値を含んでいます。これらのブロックは、アテンション計算中にPagedAttentionカーネルによって効率的に識別されます。ブロックは必ずしも連続する必要がないため、キーと値を柔軟に管理することができます。

PagedAttention内のシーケンスの最後のブロックのみでメモリリークが発生します。実際の使用では、これにより効果的なメモリ利用が可能となり、わずか4%の非効率性しか生じません。このメモリ効率の向上により、GPUの利用率を高めることができます。

また、PagedAttentionには効率的なメモリ共有のもう一つの利点があります。PagedAttentionのメモリ共有機能は、並列サンプリングやビームサーチなどのサンプリング技術に必要な追加メモリを大幅に削減します。これにより、メモリ利用率を最大55%削減しながら、スピードを最大2.2倍向上させることができます。この改善により、これらのサンプル技術は大規模言語モデル(LLM)サービスにおいて有用で効果的なものとなります。

研究者たちは、このシステムの精度を研究しました。彼らは、FasterTransformerやOrcaなどの最先端のシステムと同じ遅延時間で、vLLMが有名なLLMのスループットを2〜4倍増加させることを発見しました。より大きなモデル、より複雑なデコーディングアルゴリズム、およびより長いシーケンスは、より顕著な改善をもたらします。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「トランスフォーマーの再定義:シンプルなフィードフォワードニューラルネットワークが効率的なシーケンス・トゥ・シーケンスのタスクにおいて注意機構を模倣する方法」

ETHチューリッヒの研究者は、標準の浅いフィードフォワードネットワークを利用してトランスフォーマーモデルの注意メカニズム...

機械学習

「セマンティックカーネルへのPythonistaのイントロ」

ChatGPTのリリース以来、大規模言語モデル(LLM)は産業界とメディアの両方で非常に注目されており、これによりLLMを活用しよ...

AI研究

「サリー大学の研究者が開発した新しいソフトウェアは、AIが実際にどれだけの情報を知っているかを検証することができます」

ここ数年、人工知能(AI)のドメインでいくつかの技術的なブレークスルーがあり、いくつかの産業やセクターに深い影響を与え...

AIニュース

著者たちはAI企業に対して団結し、著作権保護された作品に対する尊重と報酬を求めます

著名な作家、マーガレット・アトウッド、ヴィエット・タン・グエン、フィリップ・プルマンなどの文学の巨匠たちが、人工知能...

人工知能

「質問、肩をすくめること、そして次は何か:変化の25年」

「Googleが設立されて以来、私たちは難しい質問に答えるために取り組み、人々が自分の質問に答えを得るのを助け、世界のため...

機械学習

In Japanese キャプチャを超えて:近代的なボット対策におけるAIの進展の探求

この記事は、従来のCAPTCHAから最先端の身元確認へと進化していくデジタル防御戦略の実践を表しています