ワシントン大学とNVIDIAからの研究者が提案するヒューマノイドエージェント:生成エージェントの人間のようなシミュレーションのための人工知能プラットフォーム

ワシントン大学とNVIDIAによる研究者が提案するヒューマノイドエージェント:人間のようなシミュレーションを可能とする人工知能プラットフォーム

人間のような生成エージェントは、自然で魅力的なユーザーインタラクションを提供するために、チャットボットや仮想アシスタントでよく使用されます。これらのエージェントはユーザーのクエリを理解し、応答することができ、会話に参加し、質問に答えたり、推奨をしたりするなどのタスクを実行することができます。これらのエージェントは、自然言語処理(NLP)の技術やGPT-3などの機械学習モデルを使用して、矛盾のない文脈に沿った応答を生成します。彼らはインタラクティブな物語、対話、およびキャラクターをビデオゲームや仮想世界で作成し、ゲーム体験を向上させることができます。

人間のような生成エージェントは、ライターやクリエイターがアイデアを出し、ストーリープロットを作成したり、詩や音楽を作曲したりするのを支援することができます。しかし、このプロセスは人間の思考とは異なります。人間は物理的な環境の変化に応じて計画を常に適応させる傾向があります。ワシントン大学と香港大学の研究者は、異なる要素を導入することで、生成エージェントが人間のように行動するように誘導するヒューマノイドエージェントを提案しています。

人間の心理学に触発されて、研究者は直感的で無理のない思考プロセスを扱うためのシステム1と、論理的な思考プロセスを扱うためのシステム2の2つのメカニズムを提案しました。これらのエージェントの行動を影響するために、基本的なニーズ、感情、および他のエージェントとの社会的関係の親密さなどの要素を導入しました。

設計されたエージェントは他の人と対話する必要があり、失敗した場合には孤独、病気、疲労などのネガティブなフィードバックを受け取ります。

社会的な脳仮説は、我々の認知能力の大部分が社会的関係の品質を追跡するために進化したと提唱しています。人々は変化に適応するために他の人々と頻繁に対話します。この行動を模倣するために、彼らはヒューマノイドエージェントにお互いの関係がどれだけ親しいかに基づいて会話を調整する力を与えました。彼らのエージェントはUnity WebGLゲームインターフェースを使用して彼ら自身を可視化し、インタラクティブな分析ダッシュボードを使用して時間の経過に伴う刺激されたエージェントの状態を示します。

彼らはUnity WebGLゲームエンジンを使用してヒューマノイドエージェントを可視化するためのサンドボックスHTMLゲーム環境を作成しました。ユーザーは3つの異なる世界のいずれかを選択して、各ステップでエージェントの状態と位置を表示することができます。彼らのゲームインターフェースは、シミュレートされた世界からのJSON構造化ファイルを取り込み、アニメーションに変換します。彼らは様々なヒューマノイドエージェントの状態を時間の経過にわたって可視化するためにPlotly Dashを開発しました。

彼らのシステムは現在、2つのエージェント間の対話のみをサポートしており、マルチパーティの対話を支援することを目指しています。エージェントは実世界の人間の行動を完全に反映していないシミュレーションで作業しているため、ユーザーにはシミュレーションで作業していることを通知する必要があります。その能力にもかかわらず、人間のような生成エージェントを使用する際には倫理的な問題やプライバシーの懸念を考慮することが重要です。情報の拡散、トレーニングデータに偏りがあること、責任ある使用と監視の可能性などです。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

ETHチューリッヒの研究者たちは、LMQLという言語モデルとの相互作用のためのプログラミング言語を紹介しました

大規模な言語モデルの性能は、質問応答やコード生成などのさまざまなタスクで印象的でした。言語モデルは、入力に基づいてシ...

AIニュース

人間の嗅覚とAIが匂いの命名で競い合う

研究者たちは、グラフニューラルネットワークを開発し、それが信頼性のある形で人間のボランティアの55種類のにおいの識別を...

データサイエンス

「CNNによる特徴抽出の探求」

「畳み込みニューラルネットワークは、機械学習を用いた画像分類タスクにおいて、今日の基礎となっていますただし、分類の前...

機械学習

「Hugging Face Transformersライブラリを解剖する」

これは、実践的に大規模言語モデル(LLM)を使用するシリーズの3番目の記事ですここでは、Hugging Face Transformersライブラ...

機械学習

「Keras 3.0 すべてを知るために必要なこと」

「Keras 3.0でAIの協力力を解放しましょう!TensorFlow、JAX、PyTorchの間をシームレスに切り替え、深層学習プロジェクトを革...

機械学習

「簡単な英語プロンプトでLLMをトレーニング!gpt-llm-trainerと出会って、タスク固有のLLMをトレーニングする最も簡単な方法」

大規模な言語モデル(LLM)と呼ばれるAIの形式は、人間と同等のテキストを生成することが証明されています。しかし、LLMの訓...