「物理情報を持つニューラルネットワークのデザインパターンの解明:パート07」

Understanding Design Patterns of Neural Networks with Physical Information Part 07

パラメトリックPINNの効率的なトレーニングのためのアクティブラーニング

Scott Grahamによる写真、Unsplash

このシリーズの7番目のブログ投稿へようこそ。物理情報付きニューラルネットワーク(PINN)のデザインパターンを探求するエキサイティングな旅を続けます🙌

このブログでは、PINNにアクティブラーニングを導入する論文について詳しく見ていきます。通常通り、デザインパターンの観点から論文を検討します。まず、ターゲットの問題について説明し、その後、提案された手法を紹介します。その後、評価手順と提案された手法の利点と欠点について議論します。最後に、将来の機会を探索することでブログを締めくくります。

このシリーズが拡大し続けるにつれて、PINNのデザインパターンのコレクションもますます豊かになります!以下は、あなたが待ち望んでいるもののちょっとした予告です:

PINNデザインパターン01:残差点の分布の最適化

PINNデザインパターン02:ダイナミックな解の間隔の拡張

PINNデザインパターン03:勾配ブースティングを使用したPINNのトレーニング

PINNデザインパターン04:勾配強化PINN学習

PINNデザインパターン05:自動ハイパーパラメータの調整

PINNデザインパターン06:因果的PINNトレーニング

さあ、始めましょう!

1. 論文概要 🔍

  • タイトル: ナビエ・ストークス方程式のパラメトリック解を集約・補間するための物理情報付きニューラルネットワークのアクティブトレーニング
  • 著者: C. A., Arthurs, A. P. King
  • 研究所: キングス・カレッジ・ロンドン
  • リンク: Journal of Computational Physics

2. デザインパターン 🎨

2.1 問題 🎯

PINNの主な用途の1つは、高精度で時間のかかる数値シミュレーション(例:構造力学のためのFEMシミュレーション)を代理することです。既知の支配微分方程式によって強制される強力な正則化(追加の損失項として表現)により、PINNのトレーニングは通常、わずかなシミュレーション実行から収集された最小限のデータのみが必要です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「Seerの最高データオフィサーであるDr. Serafim Batzoglouによるインタビューシリーズ」

セラフィム・バツォグルはSeerのチーフデータオフィサーですSeerに加わる前は、セラフィムはInsitroのチーフデータオフィサー...

人工知能

スコット・スティーブンソン、スペルブックの共同創設者兼CEO- インタビューシリーズ

スコット・スティーブンソンは、Spellbookの共同創設者兼CEOであり、OpenAIのGPT-4および他の大規模な言語モデル(LLM)に基...

人工知能

ピーター・マッキー、Sonarの開発者担当責任者-インタビューシリーズ

ピーター・マッキーはSonarのDeveloper Relationsの責任者です Sonarは、悪いコードの1兆ドルの課題を解決するプラットフォー...

人工知能

「スノーケルAIのCEO兼共同創設者、アレックス・ラットナー - インタビューシリーズ」

アレックス・ラトナーは、スタンフォードAIラボを母体とする会社、Snorkel AIのCEO兼共同創設者ですSnorkel AIは、手作業のAI...

人工知能

「UVeyeの共同設立者兼CEO、アミール・ヘヴェルについてのインタビューシリーズ」

アミール・ヘヴァーは、UVeyeのCEO兼共同創設者であり、高速かつ正確な異常検出により、自動車およびセキュリティ産業に直面...

人工知能

エンテラソリューションズの創設者兼CEO、スティーブン・デアンジェリス- インタビューシリーズ

スティーブン・デアンジェリスは、エンタラソリューションズの創設者兼CEOであり、自律的な意思決定科学(ADS®)技術を用いて...