「UCSDとByteDanceの研究者が、アクターズネルフ(ActorsNeRF)を発表:未知の俳優にも対応するアニメータブルな人間アクターネルフモデルで、フューショット設定の環境に汎化する」という意味です
「UCSDとByteDanceの研究者がアクターズネルフ(ActorsNeRF)を発表:未知の俳優にも対応可能なアニメータブルな人間アクターネルフモデルでフューショット設定の環境に汎化する」という意味です
Neural Radiance Fields(NeRF)は、2D画像またはまばらな3Dデータから3Dシーンとオブジェクトをキャプチャするための強力なニューラルネットワーク技術です。NeRFは、「NeRF in」と「NeRF out」の2つの主要なコンポーネントから構成されるニューラルネットワークアーキテクチャを使用します。「NeRF in」ネットワークは、ピクセルの2D座標と関連するカメラのポーズを入力し、特徴ベクトルを生成します。「NeRF out」ネットワークは、この特徴ベクトルを入力として受け取り、対応する3Dポイントの3D座標と色情報を予測します。
NeRFベースの人物表現を作成するには、通常、さまざまな視点から人物被写体の画像またはビデオをキャプチャします。これらの画像はカメラ、深度センサー、または他の3Dスキャニングデバイスから取得できます。NeRFベースの人物表現には、ゲームや仮想現実のための仮想アバター、アニメーションや映画制作のための3Dモデリング、診断と治療計画のための患者の3Dモデル作成など、さまざまな応用があります。ただし、計算負荷が高く、大量のトレーニングデータが必要です。
それには、同期したマルチビュービデオと特定の人物ビデオシーケンスでトレーニングされたインスタンスレベルのNeRFネットワークの組み合わせが必要です。研究者は、ActorsNeRFと呼ばれる新しい表現方法を提案しています。これは、見知らぬアクターにも対応するカテゴリレベルの人物アクターNeRFモデルであり、数枚の画像(例:30フレーム)のみでAIST ++データセットの見知らぬポーズで新しいアクターの高品質な新規ビューを合成します。
- 「Googleの研究者が球面上でのディープラーニングのためのJAX向けのオープンソースライブラリを紹介します」
- マンチェスター大学の研究者たちは、MentalLLaMAを導入しましたこれは、読みやすい精神健康分析のためのオープンソースLLMシリーズで、指導に従う能力を持っています
- MITによる新しい機械学習の研究は、大規模言語モデル(LLM)が空間と時間の概念を理解し表現する方法を示しています
研究者は、2つのレベルのカノニカル空間の方法に従っています。特定のボディポーズとレンダリング視点に対して、3D空間のサンプリングポイントは、スキンウェイトネットワークによって生成されるスキンウェイトを使用して最初にカノニカル空間に変換されます。スキンウェイトは、キャラクターをアニメーションする際に、キャラクターをどのように変形させるかを制御します。スキンウェイトネットワークは、3Dコンピュータグラフィックスでリアルなキャラクターの動きや変形を実現するために重要です。
異なる個人間で汎化するために、研究者はカテゴリレベルのNeRFモデルをさまざまな被験者の多様なセットでトレーニングしました。推論フェーズでは、対象のアクターのわずかな画像のみを使用して、事前トレーニングされたカテゴリレベルのNeRFモデルを微調整しました。これにより、モデルをアクターの特定の特徴に適応させることができます。
研究者は、ActorsNeRFがHumanNeRFアプローチを大幅に上回り、HUmanNeRFシステムと比較して未観測の体の部位に対して有効な形状を維持することを発見しました。ActorsNeRFは、カテゴリレベルを活用して、体の未観測部分をスムーズに合成することができます。ActorsNeRFは、ZJU-MoCapやAIST ++データセットなどの複数のベンチマークでテストされると、未知のポーズを持つ新しい人物アクターを複数のフューショット設定で上回ります。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- 「エアガーディアンと出会ってください:目の追跡技術を使用して、MITの研究者たちが開発した人間のパイロットがどこを見ているかを追跡する人工知能システム」
- UC BerkeleyとUCSFの研究者が神経ビデオ生成を革新します: 高度な空時的ダイナミクスのためのLLM-Groundedビデオ拡散(LVD)の紹介
- 新しいAI論文で、CMUとGoogleの研究者が言語モデルの出力を再定義します:応答を一時停止トークンで遅延させることが、QAや推論のタスクでのパフォーマンスを向上させる方法
- ノースウェスタン大学の研究者たちは、最初の人工知能(AI)システムを開発しましたこのシステムは、ゼロからロボットを知的に設計することができます
- スタンフォード大学研究者が提案するMAPTree:強化された堅牢性とパフォーマンスを備えたベイジアンアプローチに基づく決定木生成
- ITUデンマークの研究者は、神経発達プログラムを紹介:生物の成長と人工ニューラルネットワークとの間のギャップを埋める
- 「Google DeepMindの研究者が『プロンプトブリーダー』を紹介:与えられたドメイン内で自己言及的かつ自己向上型AIシステムで、効果的なドメイン固有のプロンプトを自動的に進化させることができます」というものです