「UCSCとTU Munichの研究者が、余震を予測するための新しいディープラーニングベースのモデルであるRECASTを提案する」

UCSCとTU Munichの研究者がRECASTという新しいディープラーニングベースの予測モデルを提案する

人工知能はほぼすべての可能な分野に進出しています。この領域では広範な研究が行われています。私たちはまだまだ発見すべきことがたくさんあります。人工知能とディープラーニングモデルは、地震学でも重要な役割を果たしており、地震の予測に使用されています。過去の数年間、地震の余震予測モデルはほとんど変わっていませんでした。これらの古いモデルは、小規模なデータセットではうまく動作しますが、大規模なデータセットでは苦戦します。

この問題を解決するために、カリフォルニア大学サンタクルーズ校とミュンヘン工科大学の研究者たちは、RECASTというディープラーニングを使用した新しいモデルを作成しました。彼らはこのモデルの背後にディープラーニングを使用しました。ディープラーニングは大規模なデータセットを扱うのに役立つためです。新しいモデルは、古いモデルと比較して効果的であり、あらゆる面で古いモデルを打ち負かしました。古い地震予測モデルであるETASは、これらの研究者が限られたデータを持っていた数年前に作成されました。しかし今日では、私たちは巨大なデータセットを持っており、古いモデルでは対応できませんでした。古いETASモデルは壊れやすく、扱いが難しいです。地震予測をディープラーニングで改善するには、モデルを比較するためのより良い方法が必要です。RECASTモデルは、南カリフォルニアの合成地震データと実際の地震データの両方でテストされました。特にデータが多い場合、ETASモデルよりもわずかに優れた性能を発揮し、さらに速くなりました。

研究者たちは以前から機械学習やディープラーニングモデルを地震予測に使用してきましたが、技術はまだ十分に整っていませんでした。RECASTモデルはより正確であり、さまざまな地震データセットと簡単に連携することができます。この柔軟性は地震予測を革新する可能性があります。ディープラーニングによって、モデルは多くの新しいデータを扱い、さらに、研究が少ない地域の地震を予測するためにさまざまな地域の情報を組み合わせることができます。ディープラーニングモデルに関するこの情報は非常に役に立ち、研究が行われています。研究者はまた、ニュージーランド、日本、カリフォルニアのデータでトレーニングされたモデルを、利用可能なデータが少ない場所での地震予測に使用できることを調査しました。

これらのディープラーニングモデルは、地震予測のためのさまざまなデータタイプへのアクセスを研究者に支援します。これまでは公式に地震と分類されるものに焦点を当てていましたが、連続的な地震動データを使用することができるようになりました。これは分類の課題です。モデルの精度とF1スコアは、大規模なデータセットに対して非常に良好でした。研究者たちはまだこの新しいモデルに取り組んでおり、そのポテンシャルについての議論と検討を促すでしょう。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

拡散生成モデルによる医薬品発見の加速化

MITの研究者たちは、DiffDockというモデルを構築しましたこのモデルは、いつか従来の方法よりも速く新しい薬剤を見つけ、副作...

人工知能

20以上のスタートアップに最適なAIツール(2023年)

AIによって、職場の創造性、分析、意思決定が革命化されています。現在、人工知能の能力は、企業が拡大を急ぎ、内部プロセス...

データサイエンス

IDSSの影響力を祝う

MITでの2日間の会議で、創設ディレクターのMunther Dahlehが退任に備えて、データ、システム、社会研究所の影響について反省...

人工知能

ChatGPT プラグイン:知っておく必要があるすべて

OpenAIが展開したサードパーティのプラグインについて学び、ChatGPTsの実際の使用を理解しましょう

AI研究

「人間の知能の解読:スタンフォードの最新のAI研究は、生来の数の感覚は学びのスキルなのか、自然の贈り物なのかを問いかける」

任意の数量を解読する能力は、数の感覚と呼ばれます。数の感覚は数学的認識において重要です。大量のものを小さなグループに...