「UCLAの研究者たちは、広帯域の回折光学ニューラルネットワークに基づいて設計されたマルチスペクトルQPIシステムを紹介する」
UCLA researchers introduce a multi-spectrum QPI system designed based on broadband diffractive optical neural networks.
量子位相イメージング(QPI)は、多くの科学および顕微鏡の分野での最先端のイメージング手法です。透明または半透明の材料を通過する際の光の光路差の最小の違いを定量化し、視覚化することが可能です。サンプル内部の屈折率分布や厚さの変化を、この非侵襲的な、ラベルフリーの手法で学ぶことができます。
マルチスペクトル量子位相イメージング(QPI)システムは、この基本原理に基づいて、興味のある波長またはスペクトルバンドの複数の位相画像を取得することにより、サンプルの屈折率と厚さに関する情報を導き出します。光が試料と相互作用する際に経験する位相シフトを評価することで、情報を得ます。
QPIは、伝統的な生物医学の分野以外でも、細胞生物学、病理学、生物物理学などを含むいくつかの科学分野で有用です。生物界面の評価のための表面科学や、光学部品や薄膜、ナノ粒子の特性評価のための材料科学などでも使用されます。その機能には、細胞内の構造やプロセスの研究、細胞の成長と挙動のリアルタイムモニタリング、がんの検出、病原体の検出、薄膜厚さの測定、光学的品質の評価、表面の粗さの解析などが含まれます。
- 『キャタリスト研究の変革:テキスト入力を使用したエネルギー予測のために設計された Transformer ベースの AI モデル、CatBERTaに出会ってください』
- 「産業界が音声AIを活用して消費者の期待に応えている方法」
- 「Google Researchが探求:AIのフィードバックは、大規模な言語モデルの効果的な強化学習において人間の入力を置き換えることができるのか?」
したがって、QPIについては、研究者による徹底的な研究が行われており、カリフォルニア大学ロサンゼルス校(UCLA)の電気・コンピュータ工学部の研究者たちは、マルチスペクトルQPIの新しい設計を紹介しました。
この手法では、ディープラーニングを使用して、広帯域の回折光学ネットワークを作成し、単一のスナップショット内でさまざまなスペクトルバンドでの量子位相画像の取得を可能にします。光学ネットワークは複数の空間的に構造化された誘電性回折層を使用し、それぞれに数十万の透過型回折特性を最適化してディープラーニングを行います。
製造された回折層を組み合わせた後、光学ネットワークはオールオプティカルな位相から強度への変換器として機能します。これにより、マルチスペクトルQPIの信号を出力面の予め決められた空間位置に光学的にルーティングし、モノクローム焦点面配列が生成された強度分布を測定し、予め決められた波長での入力オブジェクトの位相プロファイルを抽出します。
この光学ネットワークは、ディープラーニングを通じて入力オブジェクトのマルチスペクトル位相情報を最適化し、それを出力視野において、各目標スペクトルバンドに対応するオブジェクトの位相情報を空間的に符号化した独自の強度分布に変換します。
QPIは、主に2つの主要なコンポーネントで構成されています。1つはイメージングフロントエンドで、必要な位相情報を光学干渉法によって強度レベルに変換し、デジタルイメージセンサを使用して記録する役割を担っています。2つ目はデジタル処理のバックエンドタスクで、これらの信号に基づいて定量的な位相画像の必要な画像処理と再構築を行います。
システムの正確性をテストするために、研究者たちはこれまでに見たことのない新しいタイプのオブジェクトのイメージング能力を検証しました。この研究は、さまざまなアプリケーションに適した、汎用のマルチスペクトル量子位相イメージャーであることを示しています。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- UCLAとGoogleの研究者が、AVISという画像質問応答の自律情報検索のための画期的なAIフレームワークを提案しています
- 「強力な遺産:研究者の母が核融合への情熱をかきたてる」
- 「マイクロソフトリサーチがAIコンパイラを1つではなく、2つでもなく、4つも新たに紹介」
- この人工知能(AI)の研究では、SAMを医療用2D画像に適用するための最も包括的な研究である、SAM-Med2Dを提案しています
- このAI研究は、「ComCLIP:組成画像とテキストの整列におけるトレーニングフリーな方法」を公開しています
- 「UCSCとTU Munichの研究者が、余震を予測するための新しいディープラーニングベースのモデルであるRECASTを提案する」
- 「ハロー効果:AIがサンゴ礁保護に深く関与する」