UCバークレーの研究者たちは、「リングアテンション:トランスフォーマーのメモリ要件を削減するためのメモリ効率の良い人工知能アプローチ」という提案を行っています

UCバークレー研究者が提案する「リングアテンション:トランスフォーマーのメモリ効率化を図るAIアプローチ」

ディープラーニングモデルアーキテクチャの一種であるTransformerは、多くの最先端のAIモデルの文脈で使われます。これらは人工知能の分野を革新しました、特に自然言語処理や機械学習のさまざまなタスクにおいて。予測を行う際に、モデルは入力シーケンスの異なる部分の重要性を重さ付けする自己注意メカニズムに基づいています。これらはエンコーダとデコーダからなり、入力を処理します。

ただし、Transformerのコンテキストの長さを拡張するのは多くの作業が必要です。これは、負荷のかかる自己注意のためです。自己注意は、入力シーケンスの長さに平方比例するメモリのコストを持ち、長い入力シーケンスにスケールすることは困難になります。UCバークレイの研究者たちは、この問題に対処するために、シンプルな観察に基づいた「リングアテンション」と呼ばれる方法を開発しました。彼らは、自己注意とフィードフォワードネットワークの計算をブロックごとに行い、シーケンスを複数のデバイスに分散して容易に解析できることを観察しました。

彼らは、ブロックごとの注意をホスト間で分散し、各デバイスが指定された入力ブロックに特化したブロックごとの注意とフィードフォワード操作を計算します。彼らのホストデバイスは概念的なリングを形成し、リング内の次のデバイスにブロックごとの計算に使用されているキー-値ブロックのコピーを送信します。同時に前のデバイスからキーバリューブロックを受信します。

ブロック計算にはブロック転送よりも長い時間がかかります。研究チームはこれらのプロセスを重ね合わせ、通常のTransformerと比較して追加のオーバーヘッドが発生しませんでした。これにより、各デバイスには元の入力シーケンスの長さに依存しないブロックサイズに比例したメモリのみが必要となります。これにより、個々のデバイスによって課せられるメモリ制約がなくなります。

実験の結果、リングアテンションにより、従来の効率的なメモリ使用状態を持つ最先端のTransformerよりも500倍以上長いシーケンスに対してトレーニングを行うことができることが示されました。この方法では、アテンションの近似を行わずに、1億以上の長さのシーケンスをトレーニングすることも可能です。また、リングアテンションにより、個々のデバイスによって課せられるメモリ制約をなくすことで、ほぼ無限のコンテキストサイズを実現することもできます。ただし、シーケンスの長さはデバイスの数に比例するため、多くのデバイスが必要になります。

この研究では、大規模なトレーニングモデルは含まれていません。コンテキストの長さはデバイスの数に依存するため、モデルの効率性は最適化に依存します。研究者たちは将来的には最大シーケンス長と最大コンピューターパフォーマンスの両方に取り組みたいと述べています。無限に近いコンテキストの可能性により、大規模なビデオオーディオ言語モデル、拡張されたフィードバックとトライアンドエラーからの学習、コードベースの理解と生成、および遺伝子配列などの科学データを理解するためのAIモデルの適応など、多くの興味深い機会が生まれます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

この脳AIの研究では、安定した拡散を用いて脳波から画像を再現します

人間の視覚システムと似たように、世界を見て認識する人工システムを構築することは、コンピュータビジョンの重要な目標です...

AI研究

黄さんの法則に留意する:エンジニアたちがどのように速度向上を進めているかを示すビデオ

話の中で、NVIDIAのチーフサイエンティストであるビル・ダリー氏が、モーアの法則時代後のコンピュータパフォーマンスの提供...

機械学習

MPT-30B:モザイクMLは新しいLLMを使用して、NLPの限界を em>GPT-3を凌駕します

MosaicMLのLLMにおける画期的な進歩について、MPTシリーズで学びましょうMPT-30Bおよびその微調整された派生モデル、MPT-30B-...

人工知能

AgentGPT ブラウザ内の自律型AIエージェント

あなたのAIエージェントに名前と目標を与え、割り当てられた目的を達成するのを見てください

機械学習

テキストによる画像および3Dシーン編集の高精度化:『Watch Your Steps』に出会う

ニューラル放射場(NeRF)は、正確で直感的な視覚化を作成する能力により、大いに人気が高まっています。これにより、イメー...

人工知能

ChatGPTを使ってコーディングする方法' (ChatGPTをつかってコーディングするほうほう)

イントロダクション 人工知能を現代のプログラミングに取り入れることで、効率とイノベーションの新時代が到来しました。Open...