UCバークレーの研究者たちは、Gorillaという名前の、GPT-4を上回るAPIコールの記述において、Finetuned LLaMAベースのモデルを紹介しました

UCバークレーの研究者は、GPT-4を超えるAPIコールの記述のために、Finetuned LLaMAベースのモデル(Gorilla)を紹介しました

人工知能の分野における最近の大きな進歩は、大規模言語モデル(LLM)の導入です。これらのモデルは、自然言語処理(NLP)や自然言語理解(NLU)を最大限に活用するために、言語をより簡潔に理解することを可能にします。これらのモデルは、テキスト要約、質問応答、コンテンツ生成、言語翻訳など、あらゆるタスクで優れたパフォーマンスを発揮しています。これらのモデルは、論理的な推論を含む複雑なテキストのプロンプトを理解し、データのパターンや関係を特定することができます。

言語モデルは、さまざまなタスクで驚異的なパフォーマンスを示し、近年、その能力を大幅に向上させてきましたが、効率的なAPI呼び出しを行うことは依然として困難です。有名なLLMであるGPT-4でも、正確な入力引数を生成するのは困難であり、適切でないAPI呼び出しを頻繁に推奨します。この問題に対処するために、バークレーとマイクロソフトリサーチの研究者は、GPT-4を上回るAPI呼び出しの生成能力を持つ、Gorillaというfinetuned LLaMAベースのモデルを提案しました。Gorillaは、特定の活動を実行するために外部ツールと連携するLLMの能力を向上させるのに役立ちます。

研究者のチームは、APIBenchデータセットも作成しました。このデータセットは、重複する機能を持つAPIの大規模なコーパスで構成されています。このデータセットは、TorchHub、TensorHub、HuggingFaceなどの公開モデルハブから収集されました。TorchHubとTensorHubのすべてのAPIリクエストが各APIに含まれ、HuggingFaceの各タスクカテゴリにおける上位20モデルが選択されました。さらに、自己指導法を使用して、各APIに対して10の架空のユーザークエリプロンプトを生成しました。

このAPIBenchデータセットとドキュメント検索を使用して、研究者はGorillaをfinetuneしました。7兆パラメータのGorillaモデルは、APIの機能の正確さや幻覚的なミスを低下させる点でGPT-4を上回ります。ドキュメント検索ツールとの効果的な統合により、LLMがより正確にツールを使用できる可能性が示されています。Gorillaの改善されたAPI呼び出し生成能力と必要に応じてドキュメントを変更する能力は、モデルの結果の適用性と信頼性を向上させます。この開発は重要であり、定期的に更新されるドキュメントに追いつくことができるため、ユーザーにより正確かつ最新の情報を提供します。

研究者によって共有された例の1つでは、Gorillaが正しくタスクを認識し、完全に資格のあるAPI結果を提供する様子が示されています。モデルによって生成されたAPI呼び出しは、GPT-4が仮想のモデルに対するAPIリクエストを生成していることを示し、タスクの理解力の不足を示しています。一方、クロードは適切なライブラリを選択せず、正しいリソースを認識する能力の不足を示しました。これに対して、Gorillaはタスクを正しく認識します。したがって、GorillaはGPT-4やクロードとは異なり、API呼び出しの作成が正確であり、その性能とタスク理解力を示しています。

結論として、Gorillaは言語モデルのリストにおいて重要な追加です。それはAPI呼び出しの作成の問題にも対応しています。その能力により、幻覚や信頼性に関連する問題を軽減することができます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「Hugging FaceはLLMのための新しいGitHubです」

ハギングフェイスは、大規模言語モデル(LLM)のための「GitHub」となりつつありますハギングフェイスは、LLMの開発と展開を...

データサイエンス

PyCharm vs. Spyder 正しいPython IDEの選択

PyCharmとSpyderはPython開発のための2つの最も人気のあるIDEですでは、PyCharmとSpyderの直接比較を見てみましょう

AI研究

あなたのオープンソースのLLMプロジェクトはどれくらいリスクがあるのでしょうか?新たな研究がオープンソースのLLMに関連するリスク要因を説明しています

大規模言語モデル(LLM)と生成AI、例えばGPTエンジンは、最近AIの領域で大きな波を起こしており、小売個人や企業の間でこの...

人工知能

「AIは個人の知識管理をどのように変革しているのか?」

AIスタートアップは、ビジネスが知識ベースを整理しアクセスする方法を変革しようと努力していますが、個人が使用しているツ...

機械学習

「AnyLocによる最新のビジュアル位置認識(VPR)の汎用方法について紹介します」

人工知能の分野は常に進化しており、ロボット工学などのさまざまな用途に取り入れられています。ビジュアルプレースリコグニ...

人工知能

「AIにおける親密な役割:ガールフレンドとセラピスト」

この記事は、感情AIの分野についての簡単な概要と、その技術の親密な役割での潜在的な応用についてです