UCバークレーの研究者たちは、ビデオ予測報酬(VIPER)というアルゴリズムを紹介しましたこれは、強化学習のためのアクションフリーの報酬信号として事前学習されたビデオ予測モデルを活用しています

UCバークレーの研究者は、強化学習のためのアクションフリーの報酬信号として事前学習されたビデオ予測モデルを活用するアルゴリズム「VIPER」を紹介しました

手作業で報酬関数を設計することは時間がかかり、予期しない結果をもたらす可能性があります。これは、強化学習(RL)ベースの汎用意思決定エージェントの開発における主要な障害です。

従来のビデオベースの学習方法では、現在の観測値がエキスパートのものに最も似ているエージェントを報酬することができます。ただし、報酬は現在の観測値にのみ依存するため、時間を通じた意味のある活動を捉えることはできません。また、敵対的なトレーニング技術によるモードの崩壊により、一般化が妨げられます。

UCバークレーの研究者は、ビデオ予測モデルからインセンティブを抽出するための新しい方法、ビデオ予測インセンティブ強化学習(VIPER)を開発しました。VIPERは、生の映画から報酬関数を学習し、未学習のドメインにも一般化することができます。

まず、VIPERはエキスパートによって生成された映画を使用して予測モデルを訓練します。次に、ビデオ予測モデルを使用して強化学習のエージェントを訓練し、エージェントの軌跡の対数尤度を最適化します。エージェントの軌跡の分布は、ビデオモデルの分布と一致するように最小化する必要があります。ビデオモデルの尤度を直接報酬信号として使用することで、エージェントはビデオモデルと似た軌跡分布をたどるように訓練されることがあります。観測レベルの報酬とは異なり、ビデオモデルによって提供される報酬は行動の時間的一貫性を定量化します。また、尤度の評価はビデオモデルのロールアウトよりもはるかに高速であるため、より迅速なトレーニング時間枠と環境とのより大きな相互作用を可能にします。

15のDMCタスク、6のRLBenchタスク、7のAtariタスクを対象に、チームは徹底的な研究を行い、VIPERがタスクの報酬を使用せずにエキスパートレベルの制御を達成できることを示しています。調査結果によると、VIPERで訓練されたRLエージェントは、敵対的な模倣学習を上回ります。VIPERは設定に統合されているため、どのRLエージェントが使用されているかは関係ありません。ビデオモデルは、トレーニング中に遭遇しなかった腕/タスクの組み合わせにすでに一般化されています。

研究者たちは、大規模な事前学習済み条件付きビデオモデルを使用することで、より柔軟な報酬関数が可能になると考えています。生成モデリングの最近のブレークスルーのおかげで、彼らの研究は未ラベルの映画からのスケーラブルな報酬指定のためのコミュニティに基盤を提供していると信じています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

2023年の最高のオープンソースインテリジェンス(OSINT)ツール

「OSINT」という頭字語は、オープンソースインテリジェンスソフトウェアを指します。これらのプログラムはオープンソースから...

AI研究

KAISTのAI研究者が、「KTRL+F」という技術を導入しましたこれは、ドキュメント内で意味的なターゲットをリアルタイムで特定するための知識を補完するコンピューター上の検索タスクです

KTRL+Fタスクは、リアルタイムでドキュメント内の意味的な対象を特定するための知識拡張型インドキュメント検索問題であり、...

機械学習

メディアでのアルコール摂取の検出:CLIPのゼロショット学習とABIDLA2ディープラーニングの画像解析のパワーを評価する

アルコールは、広範な健康上の懸念事項であり、5.1%のグローバルな疾病負荷を占め、個人や経済に重大な負の影響を与えていま...

データサイエンス

関係データベースとその応用についての深い探求

今日では、さまざまな頻繁に関連のないカテゴリに膨大な量のデータを記憶する必要性が、高い効率のデータベースの重要な意義...

データサイエンス

「大規模言語モデル:現実世界のCXアプリケーションの包括的な分析」

大規模言語モデルを使用して、次世代の顧客体験を実現しよう:文脈に基づく応答、感情分析、パーソナライズされた推奨などを...

データサイエンス

「PythonデータサイエンスのJupyterノートブックの6つの魔法的なコマンド」

“`html Pythonベースのデータサイエンスプロジェクトでは、Jupyter Notebooksの利用が広く行われています。これらのイ...