UCバークレーの研究者たちは、ビデオ予測報酬(VIPER)というアルゴリズムを紹介しましたこれは、強化学習のためのアクションフリーの報酬信号として事前学習されたビデオ予測モデルを活用しています

UCバークレーの研究者は、強化学習のためのアクションフリーの報酬信号として事前学習されたビデオ予測モデルを活用するアルゴリズム「VIPER」を紹介しました

手作業で報酬関数を設計することは時間がかかり、予期しない結果をもたらす可能性があります。これは、強化学習(RL)ベースの汎用意思決定エージェントの開発における主要な障害です。

従来のビデオベースの学習方法では、現在の観測値がエキスパートのものに最も似ているエージェントを報酬することができます。ただし、報酬は現在の観測値にのみ依存するため、時間を通じた意味のある活動を捉えることはできません。また、敵対的なトレーニング技術によるモードの崩壊により、一般化が妨げられます。

UCバークレーの研究者は、ビデオ予測モデルからインセンティブを抽出するための新しい方法、ビデオ予測インセンティブ強化学習(VIPER)を開発しました。VIPERは、生の映画から報酬関数を学習し、未学習のドメインにも一般化することができます。

まず、VIPERはエキスパートによって生成された映画を使用して予測モデルを訓練します。次に、ビデオ予測モデルを使用して強化学習のエージェントを訓練し、エージェントの軌跡の対数尤度を最適化します。エージェントの軌跡の分布は、ビデオモデルの分布と一致するように最小化する必要があります。ビデオモデルの尤度を直接報酬信号として使用することで、エージェントはビデオモデルと似た軌跡分布をたどるように訓練されることがあります。観測レベルの報酬とは異なり、ビデオモデルによって提供される報酬は行動の時間的一貫性を定量化します。また、尤度の評価はビデオモデルのロールアウトよりもはるかに高速であるため、より迅速なトレーニング時間枠と環境とのより大きな相互作用を可能にします。

15のDMCタスク、6のRLBenchタスク、7のAtariタスクを対象に、チームは徹底的な研究を行い、VIPERがタスクの報酬を使用せずにエキスパートレベルの制御を達成できることを示しています。調査結果によると、VIPERで訓練されたRLエージェントは、敵対的な模倣学習を上回ります。VIPERは設定に統合されているため、どのRLエージェントが使用されているかは関係ありません。ビデオモデルは、トレーニング中に遭遇しなかった腕/タスクの組み合わせにすでに一般化されています。

研究者たちは、大規模な事前学習済み条件付きビデオモデルを使用することで、より柔軟な報酬関数が可能になると考えています。生成モデリングの最近のブレークスルーのおかげで、彼らの研究は未ラベルの映画からのスケーラブルな報酬指定のためのコミュニティに基盤を提供していると信じています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「AIおよび自動化により、2030年に存在しなくなるであろう6つのテクノロジージョブ」

「現在の進行方向に基づいて、バランスを保っているいくつかのテック系の職種をご紹介します」

AIニュース

「2023年の最高のAIスプレッドシートツール」

他の情報源と組み合わせると、マーケティングデータプラットフォームを含めて、Excelは迅速に貴重な洞察を提供するかもしれま...

機械学習

FLOPsとMACsを使用して、Deep Learningモデルの計算効率を計算する

この記事では、その定義、違い、およびPythonパッケージを使用してFLOPsとMACsを計算する方法について学びます

AI研究

「MITのインドの学生が声を必要としない会話デバイスを開発」

魅力的な進展として、名門マサチューセッツ工科大学(MIT)の学生が革新的なAI対応デバイス、AlterEgoを紹介しました。AlterE...

機械学習

このAI論文では、大規模なマルチモーダルモデルの機能を拡張する汎用のマルチモーダルアシスタントであるLLaVA-Plusを紹介しています

“`html 多様な現実世界の活動を効率的に実行できる汎用アシスタントを作成することは、長年にわたり人工知能の目標とな...

機械学習

単一モダリティとの友情は終わりました - 今やマルチモダリティが私の親友です:CoDiは、合成可能な拡散による任意から任意への生成を実現できるAIモデルです

ジェネレーティブAIは、今ではほぼ毎日聞く用語です。私はジェネレーティブAIに関する論文をどれだけ読んでまとめたか覚えて...