UCバークレーの研究者が、Neural Radiance Field(NeRF)の開発に利用できるPythonフレームワーク「Nerfstudio」を紹介しました

UCバークレーの研究者が、Pythonフレームワーク「Nerfstudio」を紹介

アイアンマンのファンは誰もいないでしょう?彼は自分の研究室で働いているときに本当にクールに見えます。彼が使っているホログラムや新しいガジェットは彼をクールに見せます。2Dの写真からこのような3Dのナビゲーション可能なシーン(ホログラムのようなもの)を作成することは可能でしょうか?UCバークレーの研究者たちは、Neural Radiance Fields(NeRF)という技術を使ってそれを実現しました。バークレーの他の研究者たちは、NeRFプロジェクトを加速させてよりアクセスしやすくするための開発フレームワークも作成しました。

コンピュータビジョン、グラフィックス、ロボット工学の幅広い応用のため、NeRFの開発は急速に進展しています。バークレーの研究者たちは、NeRFベースの手法をさまざまなプロジェクトで実装するためのプラグアンドプレイのコンポーネントを含むモジュラーなPyTorchフレームワークを提案しています。彼らのモジュラーデザインは、リアルタイムの可視化ツールやビデオ、ポイントクラウド、メッシュ表現へのエクスポートツールもサポートしています。

NeRFの急速な発展により、多くの研究論文が公開されていますが、コードの統合が不足しているため、その進捗状況を追跡することは困難です。多くの論文は自分自身の孤立したリポジトリで機能を実装しており、それがさまざまな実装間での機能と研究貢献の転送プロセスを複雑にしています。この問題を解決するため、バークレーの研究者たちは、Nerfstudiosとして統合されたNeRFの革新を提案しています。Nerfstudiosの主な目標は、さまざまなNeRFの技術を再利用可能なモジュラーコンポーネントにまとめ、豊富な制御スイートを備えたNeRFシーンのリアルタイム可視化を実現することです。これにより、ユーザーがキャプチャしたデータから簡単にNeRFを作成するための使いやすいワークフローが提供されます。

Nerfstudiosは、トレーニングやテスト中に任意のモデルと連携して作業するためのリアルタイムビジュアライザーをウェブ上でホストしています。これにより、ローカルのGPUマシンを必要とせずにアクセスすることができます。これはまた、Polycam、Record3D、KIRI Engineなどのさまざまなカメラタイプとモバイルアプリケーションからクリックされた異なるイメージもサポートしています。

Nerfstudiosのリアルタイム可視化インターフェースは、モデルの質的分析に便利です。これにより、手法の開発中により情報を持った意思決定が可能になります。キャプチャ軌跡から遠く離れたビューに対して、PSNRと比較して、NeRFはパフォーマンスの包括的な理解を提供します。質的分析は重要です。なぜなら、これにより開発者はモデルのパフォーマンスについてより総合的な理解を得ることができるからです。

課されたイメージに対して、Nerfstudiosは放射輝度、密度、セマンティクス、法線、特徴などの他の量に基づいて3Dシーンを最適化します。これらはデータマネージャーによって入力され、その後モデルによって処理されます。データマネージャーは、DataParserを介してイメージ形式を解析し、RayBundlesとしてレイを生成します。これらのRay Bundlesは、フィールドをクエリし、量をレンダリングするためのモデルに入力されます。

研究者の将来の課題には、より適切な評価基準の開発や、コンピュータビジョン、コンピュータグラフィックス、機械学習などの他の分野とのフレームワークの統合が含まれます。NeRFベースの手法の開発は、ニューラルレンダリングコミュニティの進歩を加速させています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「MLOpsの全機械学習ライフサイクルをカバーする:論文要約」

このAIの論文は、MLOpsの分野に関する包括的な調査を提供しています。MLOpsは、機械学習のライフサイクル全体を自動化するこ...

機械学習

TinyML アプリケーション、制限、およびIoT&エッジデバイスでの使用

過去数年間、人工知能(AI)と機械学習(ML)は、産業だけでなく学界でも人気と応用が急速に広まってきましたしかし、現在のM...

人工知能

「従来のAI vs 生成的AI」

初心者が伝統的なAIと生成的AIの違いを理解するのを助ける

データサイエンス

将来のPythonバージョン(3.12など)に一般のユーザーに先駆けてアクセスする方法

Python 3.12などの将来のバージョンを群衆より先にインストールしてテストする方法についてのチュートリアルで、新しい機能を...

AI研究

この脳AIの研究では、安定した拡散を用いて脳波から画像を再現します

人間の視覚システムと似たように、世界を見て認識する人工システムを構築することは、コンピュータビジョンの重要な目標です...

データサイエンス

PageRankによる大規模グラフの分析

ランキングは機械学習において重要な問題です与えられたドキュメントの集合に対して、特定の基準に基づいてそれらを特定の順...