PythonにおけるTwitterの感情分析- Sklearn | 自然言語処理

PythonによるTwitterの感情分析- Sklearnを使った自然言語処理

写真:Q'AILA

Pythonにおける感情分析の詳細なステップバイステッププロセス

ChatGPTやその他の類似のアプリケーションの大量導入により、今日の業界で自然言語処理の重要性や影響を見過ごすことは不可能です。また、ソーシャルメディアやオンラインビジネスには、毎日膨大なテキストデータが生成されています。企業もそれらのデータを自社の目的に利用するために取り組んでいます。

テキストデータを使用したChatGPTのようなアプリケーションを常に作成する必要はありません。テキストデータを非常に有用な方法で利用するためのシンプルな機械学習モデルもたくさんあります。

このチュートリアルでは、sklearnライブラリを使用してツイートデータの感情分析を行います。これはシンプルな分類の実践です。テキストからテキストが肯定的な感情を持つか否かを見つけようとします。

私はKaggleから「twitter.csv」というデータセットを使用しました。以下はデータセットのリンクです。データセットをダウンロードして一緒に進めてください。

Twitterの感情データセット

Twitterの感情分析

www.kaggle.com

このデータセットはAttribution 4.0 International Licenseがあります。

まず、このCSVファイルを使用してDataFrameを作成します:

import pandas as pd df = pd.read_csv('twitter.csv')df.head()

データセットには「tweet」という列があり、今日の焦点となります。ラベルの列には0または1のラベルがあります。ラベルが1の場合、ツイートの感情は肯定的であり、ラベルが0の場合、感情は否定的です。これは教師あり学習のプロセスであるため、モデルをトレーニングするためにラベルが必要です。

テキストの前処理

テキストデータを扱う際には、テキストの前処理が必要とされる追加作業があります。非常にクリーンでモデルにすぐに使える生データを得ることは不可能です。これらの追加のステップまたは作業は、自然言語処理をトリッキーにします。前回のチュートリアルで、私はいくつかの非常に人気のある…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

ヨハネス・ケプラー大学の研究者たちは、GateLoopを紹介します:線形循環とデータ制御された状態遷移によるシーケンスモデリングの進歩

ヨハネス・ケプラー大学の研究者が、効率的な長いシーケンスのモデリングのために線形再帰の可能性を活用する革新的なシーケ...

AIニュース

「AIで生成されたコードはさらにテストが必要ですか?」

「AIを搭載したツールを使用すれば、アプリケーションのプログラミングが簡単になりますしかし、人間によって書かれたコード...

AIニュース

ユーザーエクスペリエンスの向上:インタラクティブなチャットボットにOpenAIアシスタントAPIを実装する

イントロダクション OpenAIによるChatGPTとGPT 3モデルの導入により、世界はAIを統合したアプリケーションの使用にシフトしま...

AI研究

NYUとNVIDIAが協力して、患者の再入院を予測するための大規模言語モデルを開発する

退院は患者にとって重要なマイルストーンですが、時には回復への道のりの終わりではありません。米国では、初回退院後30日以...

機械学習

アリババは、2つのオープンソースの大規模ビジョン言語モデル(LVLM)、「Qwen-VL」と「Qwen-VL-Chat」を発表しました

人工知能の絶え間なく進化する領域において、画像理解とテキストインタラクションのギャップを埋めることは常に課題となって...

機械学習

「機械学習 vs AI vs ディープラーニング vs ニューラルネットワーク:違いは何ですか?」

テクノロジーの急速な進化は、ビジネスが効率化のために洗練されたアルゴリズムにますます頼ることで、私たちの日常生活を形...