「大規模言語モデル(LLM)を実世界のビジネスアプリケーションに移す」

Transferring large-scale language models (LLM) to real-world business applications.

大型言語モデルはどこにでも存在しています。顧客の会話やVCのピッチでは、LLMテクノロジーがどれくらい準備ができていて、将来のアプリケーションをどのように推進するかについての質問があります。私は以前の投稿でこれについていくつかのパターンをカバーしました。ここでは、Persistent Systemsが取り組んだ製薬業界のアプリケーションの実世界のパターンについて話します。

大型言語モデルとコアの強み

LLMは言語理解に優れています。アプリケーションで最も一般的なパターンは、リトリーバル補完生成(RAG)です。ここでは、知識がデータソースから外部的に編纂され、LLMに対してレスポンスを言い換えるためのプロンプトとしてコンテキストで提供されます。この場合、ベクトルデータベースやElasticsearchベースのエンジンのような超高速検索メカニズムが最初の検索ラインとして機能します。その後、検索結果はプロンプトにまとめられ、ほとんどAPI呼び出しとしてLLMに送信されます。

別のパターンは、データモデルをプロンプトとしてLLMに与え、特定のユーザークエリをフィードすることによって構造化データのクエリを生成することです。このパターンは、SnowflakeなどのSQLデータベースやNeo4jなどのグラフデータベース向けに、高度な「データとの対話」インターフェースを開発するために使用できます。

実世界の洞察のためのLLMの活用

Persistent Systemsは最近、スポーツテレメトリーカンパニーであるBlast Motion(野球、ゴルフなどのスイング分析)のパターンを調査しました。ここでは、プレーヤーの要約の時系列データを分析して推奨事項を得ました。

より複雑なアプリケーションでは、LLMリクエストを呼び出しの間に処理と組み合わせる必要があります。製薬会社の場合、臨床試験文書から抽出した基準に基づいて患者をフィルタリングするスマートトレイルアプリを開発しました。ここでは、LLMチェインアプローチを使用しました。まず、試験のPDF文書を読み取り、RAGパターンを使用して包含基準と除外基準を抽出するためのLLMを開発しました。

これには、GPT-3.5-Turbo(ChatGPT)のような比較的シンプルなLLMが使用されました。次に、これらの抽出されたエンティティをSnowflakeの患者SQLデータベースのデータモデルと組み合わせてプロンプトを作成しました。このプロンプトは、GPT4のようなより強力なLLMにフィードされ、Snowflakeで実行するためのSQLクエリを提供します。LLMチェインを使用するため、チェインの各ステップに複数のLLMを使用することができ、コストを管理することができます。

現在、私たちはこのチェインをより制御可能にするために、決定論的なチェインを保持することにしました。つまり、チェインにより多くの知識を持たせ、オーケストレーションを非常にシンプルで予測可能に保つことを決めました。チェインの各要素は、プレ-LLMの時代に数か月かかる複雑なアプリケーションです。

より高度なユースケースの推進

より高度なケースでは、ReActのようなエージェントを使用して、LLMに特定のユーザークエリに従ってステップバイステップの手順を作成するよう促すことができます。もちろん、これにはGPT4やCohere、Claude 2などのハイエンドのLLMが必要です。ただし、その場合、モデルが誤ったステップを踏む可能性があり、これをガードレールを使用して検証する必要があります。これは、制御可能なチェインのリンクに知識を移動するか、チェイン全体を自律的にするかのトレードオフです。

今日、言語のための生成AIの時代に慣れてくるにつれて、業界は予測可能なチェインを持つLLMアプリケーションの採用を始めています。この採用が拡大するにつれて、私たちはエージェントを介したこれらのチェインにより多くの自律性を試みることになるでしょう。それがAGIに関する議論の対象であり、私たちは時間の経過とともにこれがどのように進展するかに興味があります。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「ChatGPTでより説得力を持つようになろう」

「影響力」(ロバート・チャルディーニ著)という本の中にある強力な心理学の原理を、これらのChatGPTのプロンプトを使って直...

AIニュース

「イーロン・マスクのxAIはTwitterのフィードでトレーニングされました」

テスラやSpaceXなどの企業を展開するビジョナリーであるイーロン・マスクは、人工知能(AI)の領域に再び目を向けています。...

AI研究

「地震をAIで把握する:研究者が深層学習モデルを公開、予測の精度を向上」

研究チームは地震モデルの現状を変革しようとしています。 カリフォルニア大学バークレー校、カリフォルニア大学サンタクルー...

データサイエンス

「オンライン大規模な推薦のためのデュアル拡張二つのタワーモデル」

推薦システムは、ユーザーに個別にカスタマイズされた提案を提供するために設計されたアルゴリズムですこれらのシステムは、...

AIニュース

「生成AIにおける高度なエンコーダとデコーダの力」

はじめに 人工知能のダイナミックな領域では、技術と創造性の融合が人間の想像力の限界を押し上げる革新的なツールを生み出し...

データサイエンス

感情AIの科学:アルゴリズムとデータ分析の背後にあるもの

「エモーションAIは、高度なアルゴリズムを使用して、顔と声のデータから感情を解読し、データの偏りやプライバシーに関する...