時間の経過とともに失敗する可能性のある若いコホートの犯罪リスクを評価するためのツール

Tool to evaluate the criminal risk of young cohorts that may fail over time.

この研究の結果、個人の将来の行動は、安定した特性、早期の人生の状況、以前の行動、年齢だけでなく、出生コホートのすべてのメンバーに影響を与える社会的変化の結果でもあることが示唆されています。 ¶ クレジット:David Inderlied/Getty Images

カーネギーメロン大学(CMU)、ハーバード大学、ペンシルバニア大学の科学者たちは、犯罪リスクの評価に使用されるリスクアセスメントツール(RAI)によって駆動されるコホートバイアスが社会的変化によって損なわれると提唱しています。

研究者たちは、シカゴの個人の犯罪歴を25年間調べ、1980年代に生まれたコホートの17歳から24歳までの逮捕確率を予測する機械学習ツールが、1990年代中期に生まれたコホートでは最大89%もの確率で過大評価していることを発見しました。

彼らはまた、人種・民族グループ内で大きなコホートバイアスがあり、予想される逮捕の年齢の直前の逮捕措置を含め、高リスクの個人に限定しても持続的に存在することを発見しました。

カーネギーメロン大学のエリカ・モンタナは、「私たちの調査結果は、リスク要因と将来の逮捕との関係が時間の経過とともに安定していないことを示しています。その結果、これらのリスク要因に依存する予測モデルは、系統的かつ重大なエラーのリスクがあります」と説明しています。カーネギーメロン大学ハインツカレッジからのフル記事を見る

抄録の著作権は2023年SmithBucklin、ワシントンDC、アメリカに帰属します。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

メタがコードラマをリリース:コーディングのための最新のAIツール

メタ社は、驚異的な技術的飛躍を遂げ、最新の作品であるCode Llamaをリリースしました。Code Llamaは、Llama 2言語モデルをベ...

データサイエンス

スコルテックとAIRIの研究者は、ニューラルネットワークを使用してドメイン間の最適なデータ転送のための新しいアルゴリズムを開発しました

大規模OT(Optimum Transport)とWasserstein GAN(Generative Adversarial Networks)の出現以降、機械学習ではニューラルネ...

AI研究

大規模な言語モデルは本当に数学をできるのか?この人工知能AIの研究はMathGLMを紹介します:計算機なしで数学問題を解くための頑健なモデル

下流の自然言語処理(NLP)タスクにおいて、大規模言語モデル(LLMs)は非常に効果的であることが証明されています。GPT4やCh...

コンピュータサイエンス

バイデン政権、中国へのA.I.チップの販売にさらなる制限検討中

ホワイトハウスが人工知能機能を動かすための半導体の販売を制限する可能性があるとの報道があり、それによってテック株は急...

AIニュース

ロボットのライバルを撃退した後、オスのハエは交尾においてより優れたパフォーマンスを発揮する

科学者たちは、実験室で飼育されたオスのハエが、ライバルのオスのロボットのレプリカと交流した後、交尾により熟練していく...

AI研究

宇宙からの詳細な画像は、植物に対する干ばつの影響をより明確に示します

J-WAFSの研究者たちは、遠隔センシング観測を利用して、干ばつを監視するための高解像度システムを構築しています