「人間の活動認識におけるディープラーニング:このAI研究は、Raspberry PiとLSTMを使用した適応的なアプローチを導入し、位置に依存しない正確性を高めます」

「美容とファッションのエキスパートが教える:美しさとファッションに関する知識を活かした生き生きとした記事を書く」

ヒューマンアクティビティ認識(HAR)は、さまざまなセンサから収集したデータに基づいて、自動的に人間の活動を識別および分類する方法と技術の開発に焦点を当てた研究領域です。HARは、スマートフォン、ウェアラブルデバイス、またはスマート環境などのマシンがリアルタイムで人間の活動を理解し解釈することを目指しています。

従来は、ウェアラブルセンサに基づく方法やカメラに基づく方法が使用されていました。ウェアラブルセンサはユーザにとって不快で不便です。カメラに基づく方法は侵入的な設置が必要で、プライバシーの懸念があります。既存のHAR技術は、位置依存性、ノイズへの感度、さまざまなアプリケーション(スマートホーム、ヘルスケア、モノのインターネットなど)で多様な活動をより柔軟に認識するための必要性などの課題に直面しています。UTeMが使用する方法は、正確で適応性があり、位置に依存しない解決策を提供します。

マラッカ工科大学(UTeM)の研究者は、従来の制約に対処するためのヒューマンアクティビティ認識(HAR)の手法を作り出しました。彼らはChannel State Information(CSI)と高度な深層学習技術を活用したシステムを導入しました。

このシステムは、Channel State Information(CSI)をLong Short-Term Memory(LSTM)ネットワークと組み合わせて使用します。システムは、無線通信チャネルの状態を抽出し、リアルタイムな分類と絶対的な位置に依存しないセンシングを可能にします。LSTMネットワークは、活動の特徴の連続的な学習を実現し、異なる人と環境における人間の活動の変動に対応することで、識別プロセスを容易にします。

研究者は、まずRaspberry Pi 4と専用ファームウェアを使用して原始的なチャネル状態情報(CSI)データを収集および前処理し、MATLABを使用して品質と応用を最適化するためにデータを改善したと強調しました。

Long Short-Term Memory(LSTM)ネットワークを使用して、CSIデータから重要な特徴を抽出し、複雑な人間の活動を正確に認識できるようにしました。彼らはLSTMモデルと分類プロセスに厳密なトレーニングを行いました。オンラインフェーズではパターン認識、オフラインフェーズではパフォーマンスの向上が含まれています。

このシステムは、LSTMアルゴリズムを使用して信号のセグメンテーション方法を導入し、人間の活動の開始点と終了点を正確に決定します。

研究者は、このシステムは人間の活動の認識において驚異的な97%の正確さを達成しました。新しい環境に適応する能力を示し、HAR技術の重要な進展を示しました。

研究者は、システムの顕著な適応性を強調しました。再学習や大幅な変更を必要とせずに異なる設定に簡単に統合することができます。この柔軟性により、さまざまな分野に実用的な解決策となり、スマートホーム、ヘルスケア、モノのインターネットなどの様々な実世界の要件に効果的に対応することができます。この手法は、HAR技術の重要な進展を表し、スマートホーム、ヘルスケア、モノのインターネットなどの多くの業界に大きな影響を与える可能性があります。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「Intuitivoは、AWS InferentiaとPyTorchを使用して、AI/MLのコストを節約しながら、より高いスループットを実現します」

「これは、インテュイティボの創設者兼ディレクターであるホセ・ベニテスと、インフラストラクチャの責任者であるマティアス...

データサイエンス

ジェネラティブAIを通じた感情分析のマスタリング

イントロダクション センチメント分析は、企業が顧客のフィードバックを理解し対応する方法を革新しました。顧客のセンチメン...

機械学習

マシンラーニングの革命:光フォトニックアクセラレータでの3D処理の活用による高度な並列処理とエッジコンピューティングの互換性の実現

技術の進歩と機械学習の台頭により、データのボリュームは増加しています。世界のデータ生産は2020年には64.2ゼタバイトに達...

AI研究

このAI研究では、LSS Transformerを発表しましたこれは、Transformerにおける効率的な長いシーケンスの学習を革新的なAIアプローチで実現します

新しいAI研究では、Long Short-Sequence Transformer (LSS Transformer)という効率的な分散学習手法が紹介されました。この手...

機械学習

「Amazon SageMaker Studioを使用してBMWグループのAI/MLの開発を加速」

この記事は、BMWグループのマルク・ノイマン、アモール・シュタインベルク、マリヌス・クロメンフックと共同で執筆されました...

機械学習

「オーディオ機械学習入門」

「現在、音声音声認識システムを開発しているため、それに関する基礎知識を再確認する必要がありましたこの記事はその結果で...