「人間の活動認識におけるディープラーニング:このAI研究は、Raspberry PiとLSTMを使用した適応的なアプローチを導入し、位置に依存しない正確性を高めます」
「美容とファッションのエキスパートが教える:美しさとファッションに関する知識を活かした生き生きとした記事を書く」
ヒューマンアクティビティ認識(HAR)は、さまざまなセンサから収集したデータに基づいて、自動的に人間の活動を識別および分類する方法と技術の開発に焦点を当てた研究領域です。HARは、スマートフォン、ウェアラブルデバイス、またはスマート環境などのマシンがリアルタイムで人間の活動を理解し解釈することを目指しています。
従来は、ウェアラブルセンサに基づく方法やカメラに基づく方法が使用されていました。ウェアラブルセンサはユーザにとって不快で不便です。カメラに基づく方法は侵入的な設置が必要で、プライバシーの懸念があります。既存のHAR技術は、位置依存性、ノイズへの感度、さまざまなアプリケーション(スマートホーム、ヘルスケア、モノのインターネットなど)で多様な活動をより柔軟に認識するための必要性などの課題に直面しています。UTeMが使用する方法は、正確で適応性があり、位置に依存しない解決策を提供します。
マラッカ工科大学(UTeM)の研究者は、従来の制約に対処するためのヒューマンアクティビティ認識(HAR)の手法を作り出しました。彼らはChannel State Information(CSI)と高度な深層学習技術を活用したシステムを導入しました。
- Google AIとテルアビブ大学の研究者は、テキストから画像への拡散モデルと専門のレンズジオメトリを組み合わせた人工知能フレームワークを提案しています画像のレンダリングに関して、これは画期的なものです
- このQualcomm AI ResearchのAIペーパーは、EDGIを公開しました:先進的なモデルベースの強化学習と効率的な計画のための画期的な不変拡散器
- 「Google DeepMind ResearchはSODAを紹介しました:表現学習のために設計された自己教師付き拡散モデル」
このシステムは、Channel State Information(CSI)をLong Short-Term Memory(LSTM)ネットワークと組み合わせて使用します。システムは、無線通信チャネルの状態を抽出し、リアルタイムな分類と絶対的な位置に依存しないセンシングを可能にします。LSTMネットワークは、活動の特徴の連続的な学習を実現し、異なる人と環境における人間の活動の変動に対応することで、識別プロセスを容易にします。
研究者は、まずRaspberry Pi 4と専用ファームウェアを使用して原始的なチャネル状態情報(CSI)データを収集および前処理し、MATLABを使用して品質と応用を最適化するためにデータを改善したと強調しました。
Long Short-Term Memory(LSTM)ネットワークを使用して、CSIデータから重要な特徴を抽出し、複雑な人間の活動を正確に認識できるようにしました。彼らはLSTMモデルと分類プロセスに厳密なトレーニングを行いました。オンラインフェーズではパターン認識、オフラインフェーズではパフォーマンスの向上が含まれています。
このシステムは、LSTMアルゴリズムを使用して信号のセグメンテーション方法を導入し、人間の活動の開始点と終了点を正確に決定します。
研究者は、このシステムは人間の活動の認識において驚異的な97%の正確さを達成しました。新しい環境に適応する能力を示し、HAR技術の重要な進展を示しました。
研究者は、システムの顕著な適応性を強調しました。再学習や大幅な変更を必要とせずに異なる設定に簡単に統合することができます。この柔軟性により、さまざまな分野に実用的な解決策となり、スマートホーム、ヘルスケア、モノのインターネットなどの様々な実世界の要件に効果的に対応することができます。この手法は、HAR技術の重要な進展を表し、スマートホーム、ヘルスケア、モノのインターネットなどの多くの業界に大きな影響を与える可能性があります。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- 北京大学とマイクロソフトの研究者がCOLEを紹介:シンプルな意図プロンプトを高品質なグラフィックデザインに変換する効果的な階層生成フレームワーク
- 「UCバークレーの研究者たちは、スターリング-7Bを発表しました:AIフィードバックからの強化学習でトレーニングされたオープンな大規模言語モデル(LLM)です(RLAIF)」
- このMicrosoftのAI研究ケーススタディでは、MedpromptがGPT-4の医学を超えた専門能力をドメイン固有のトレーニングなしでどのように向上させるかが明らかにされています
- テキサス大学の研究者たちは、機械学習を用いてインプラントベースの再建合併症を予測する方法を紹介します
- 「ADHDを持つ思春期の若者において、この深層学習研究はMRIスキャンの分析において独特な脳の変化を明らかにする:MRIスキャン分析の飛躍的な進歩」
- コーネル大学の研究者たちは、言語モデルのプロンプトについての洞察を明らかにしました:次のトークンの確率が隠れたテキストを明らかにする方法についての深い探求
- 「研究者がドメイン固有の科学チャットボットを開発」