このAI研究は、大規模言語モデル(LLM)における合成的な人格特性を説明しています

This AI research explains synthetic personality traits in large-scale language models (LLM).

個人の人格は、質、特性、思考方法のユニークな組み合わせから成り立ちます。共有の生物学的および環境的な歴史により、最も基本的な社会的相互作用と好みを形成します。訓練中に人間が生成したデータに広範に露出することで、LLM(Large Language Model)は、人間のような人格を説得力を持って表現し、結果として合成的な人格を示すことができます。

LLMの能力の向上に伴う意図しない影響(暴力的な言語の生成、詐欺的および操作的な言語の生成など)の特定を試みる研究が最近行われています。LLMからの対話、説明、知識の抽出は常に信頼性があるわけではありません。

これらのモデルによって生成された言語の人格特性に関する理解は、LLMが主要な人間-コンピュータインタラクション(HCI)インタフェースとなるにつれて重要です。同様に、LLMが生成する人格プロファイルを安全かつ適切に効果的にエンジニアリングする方法を学ぶことも重要です。研究者は、LLMの結果におけるネガティブで深刻な人格特性の影響を軽減するための、few-shot promptingを含む手法を研究しています。LLMは非常に変動する出力を持ち、プロンプトに過敏ですが、その人格を科学的かつ体系的に定量化する方法についてはまだ研究が行われていません。

Google DeepMind、ケンブリッジ大学、Google Research、慶應義塾大学、カリフォルニア大学バークレー校の研究者たちは、厳密で検証された心理測定的アプローチを提案し、LLMに基づく人格合成を特徴づけ、形成する方法を提示しています。

チームはまず、既存の心理測定テストを利用して、LLMが生成した文学において人格を特徴づける構造的妥当性を確立するための方法論を作成します。彼らは、制御されたプロンプトを介してLLMの応答に人口分散を模倣する新しいアプローチを提案し、人格とその外部的関連性との統計的相関を、人間の社会科学データに存在するようにテストします。最後に、彼らはLLMに独立して機能し、特性レベルに観測可能な変化をもたらす人格形成の方法を貢献します。

研究者たちは、MCQAと長文生成の2つの自然なインタラクション設定で、サイズや訓練方法の異なるLLMにアプローチをテストしました。調査結果は以下の観察結果を示しています:

  1. 特定のプロンプト構成の下で、LLMは信頼性があり、人格をシミュレートすることができます。
  2. LLMがシミュレートした人格の信頼性と妥当性は、より大きなモデルにおいてより強くなります。
  3. LLMの出力における人格は、特定の人格プロファイルを模倣するために望ましい次元に沿って形成することができます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

AIとアクセシビリティを活用して、融合エネルギーの早期実現を目指す

「MITプラズマ科学・融合センターは、融合データへのアクセスを向上させ、労働力の多様性を高めるためにDoEの支援を受けるこ...

データサイエンス

「コンパートメント化拡散モデル(CDM) 異なるデータソース上で異なる拡散モデルまたはプロンプトをトレーニングするためのAIアプローチ」

最近の技術の進歩と人工知能の分野における発展により、多くの進展がありました。有名なChatGPTモデルを使用したテキスト生成...

データサイエンス

機械学習モデルを成長させる方法の学習

新しいLiGO技術により、大規模な機械学習モデルのトレーニングを加速し、AIアプリケーションの開発にかかる費用と環境負荷を...

機械学習

「言葉から世界へ:AIマルチモーダルによる微細なビデオ説明を用いたビデオナレーションの探求」

言語は人間の相互作用の主要な形態であり、視覚や音響などの他の感覚に補足的な詳細を提供するだけでなく、声によるナビゲー...

AIニュース

中国の強力なNvidia AIチップの隠れた市場

深圳華強北電子區的繁華街道之中,一個高端 Nvidia AI 芯片的地下市場悄然興起。這個隱蔽的世界在出口限制和對這些尖端處理器...