このAI論文では、「ビデオ言語計画(VLP)」という新しい人工知能アプローチを提案していますこのアプローチは、ビジョン言語モデルとテキストからビデオへのダイナミクスを組み合わせたツリーサーチ手法で構成されています

このAI論文では、「ビデオ言語計画(VLP)」に基づく新たな人工知能アプローチを提案しています

人工知能の進化により、生成モデルは急速に成長しています。物理環境と知的に相互作用するアイデアは、低レベルの基礎的なダイナミクスと高レベルの意味的な抽象化の2つの異なるレベルでの計画の重要性を強調しています。これらの2つのレイヤーは、実際の世界での活動を適切に制御するためには、ロボットシステムにとって不可欠です。

計画問題をこれらの2つのレイヤーに分割する概念は、ロボット工学では以前から認識されています。その結果、動作とタスクの計画を組み合わせ、複雑な操作作業の制御ルールを特定することを含む多くの戦略が開発されてきました。これらの方法は、作業の目標と現実の環境のダイナミクスを考慮に入れた計画を生成することを目的としています。LLMについて話すと、これらのモデルは記号的なジョブの説明を使用して高レベルの計画を作成することができますが、そのような計画を実装することには問題があります。形状、物理、制約など、タスクの具体的な部分に関しては、推論することができません。

最近の研究では、Google Deepmind、MIT、およびUC Berkeleyの研究者チームが、テキストからビデオやビジョン言語モデル(VLM)を統合することでこれらの欠点を克服する提案を行っています。両モデルの利点を組み合わせたこの統合は、Video Language Planning(VLP)として紹介されています。VLPは、長期的で複雑な活動のための視覚的な計画を容易にすることを目的として導入されました。VLPは、インターネットデータ上で広範な事前トレーニングを受けた大規模な生成モデルの最近の進展を活用しています。VLPの主な目標は、言語と視覚のドメインの両方で理解と長いアクションシーケンスを必要とするジョブを計画することを容易にすることです。これらのジョブには、単純なオブジェクトの配置から複雑なロボットシステムの操作まで、さまざまなものが含まれます。

VLPの基礎は、2つの主要部分からなるツリーサーチプロセスです。

  1. ビジョン言語モデル:これらのモデルは値関数とポリシーの両方の役割を果たし、計画の作成と評価をサポートします。タスクの説明と利用可能な視覚情報を理解した後、作業を完了するための次のアクションを提案することができます。
  1. テキストからビデオへのモデル:これらのモデルはダイナミクスモデルとしての役割を果たし、特定の意思決定がどのような影響を与えるかを予測する能力を持っています。これらの予測は、ビジョン言語モデルが示唆する行動から導かれる可能性のある結果を予測します。

VLPでは、長期的なタスクの指示と現在の視覚的観察が主な入力として使用されます。VLPの結果は、言語と視覚の特徴を組み合わせて最終目標を達成するための段階的な指示を提供する完全かつ詳細なビデオ計画です。これにより、書かれた作業の説明と視覚的理解とのギャップを埋めるのに役立ちます。

VLPは、バイアームの器用な操作や複数オブジェクトの再配置など、さまざまな活動を行うことができます。この柔軟性は、アプローチの幅広い可能性を示しています。実際のロボットシステムは、生成されたビデオの設計図を実際に実装することができます。目標指向のルールは、仮想計画を実際のロボットの動作に変換するのに役立ちます。これらの規則により、ロボットは中間フレームごとのビデオ計画を行動のガイドとして使用しながら、ステップバイステップでタスクを実行することができます。

VLPを使用した実験を以前の手法と比較すると、長期的なタスクの成功率の重要な向上が見られました。これらの調査は、3つの異なるハードウェアプラットフォームを使用した実際のロボットおよびシミュレーション環境で実施されました。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

リトリーバル オーグメンテッド ジェネレーション(RAG)推論エンジンは、CPU上でLangChainを使用しています

「リトリーバル増強生成(RAG)は広範にカバーされており、特にチャットベースのLLMへの応用については詳しく語られています...

AIニュース

「GPT-4とXGBoost 2.0の詳細な情報:AIの新たなフロンティア」

イントロダクション AIは、GPT-4などのLLMの出現により、人間の言語の理解と生成を革新し、大きな変化を経験しています。同時...

AIニュース

ChatGPTカスタム指示の使用方法(6つのユースケース)

「カスタム指示」は、ChatGPTが応答を生成する際に考慮してほしい個人の好みや要件を追加することができます

人工知能

ChatGPTを使ってコーディングする方法' (ChatGPTをつかってコーディングするほうほう)

イントロダクション 人工知能を現代のプログラミングに取り入れることで、効率とイノベーションの新時代が到来しました。Open...

AIニュース

「企業がGoogle Cloud AIを利用する7つの方法」

「Google Cloud Next 2023では、数千人がサンフランシスコに集まり、Google Cloudの最新アップデートについて学びました」

機械学習

「物理学と流体力学に応用されたディープラーニング」

数値シミュレーションは、物理システムの挙動を理解するために何年も使用されてきました流体が構造物と相互作用する方法、応...