このAI論文は、柔軟なタスクシステムと手順的生成による強化学習を革新するNeural MMO 2.0を紹介しています
柔軟なタスクシステムと手続き的生成による強化学習の革新、Neural MMO 2.0をご紹介!
MIT、CarperAI、Parametrix.AIの研究者らは、Neural MMO 2.0を導入しました。これは、多様な目的と報酬信号を定義できる柔軟なタスクシステムを強調した、強化学習研究用の大規模マルチエージェント環境です。主な改善点は、未知のタスク、マップ、対戦相手に対応できるエージェントのトレーニングを研究者に課すことです。バージョン2.0は完全なリライトを行い、CleanRLとの互換性を確保し、適応性のあるエージェントのトレーニングに向けた強化機能を提供しています。
2017年から2021年の間に、Neural MMOの開発により、Griddly、NetHack、MineRLなどの影響力のある環境が生まれました。これらは以前の出版物で詳細に比較されました。2021年以降、Melting PotやXLandなどの新しい環境が存在し、マルチエージェント学習と知能評価シナリオの範囲が拡大しました。Neural MMO 2.0は、性能が向上し、多様な目的の定義が可能な柔軟なタスクシステムを搭載しています。
Neural MMO 2.0は、柔軟なタスクシステムを通じて、幅広い目標と報酬信号をユーザーが定義できる高度なマルチエージェント環境です。このプラットフォームは完全なリライトが行われ、複雑なマルチエージェントの相互作用と強化学習のダイナミクスの研究のための動的な空間を提供します。タスクシステムには、GameState、Predicates、Tasksの3つのコアモジュールがあり、構造化されたゲーム状態のアクセスを提供します。Neural MMO 2.0は、マルチエージェントの相互作用と強化学習のダイナミクスを探求するための強力なツールです。
- 機械学習におけるXGBoostの詳細な理解
- 「GiskardはHuggingFaceにGiskard Botをリリースします:HuggingFace Hubにプッシュした機械学習モデルの問題を自動的に検出するボットです」
- このAI論文は、大規模言語モデルに対する敵対的攻撃に対する規則遵守の評価のための新しい機械学習フレームワークであるRuLESを紹介しています
Neural MMO 2.0はPettingZoo ParallelEnv APIを実装し、CleanRLのProximal Policy Optimizationを活用しています。このプラットフォームには、GameState、Predicates、Tasksの3つの相互接続されたタスクシステムモジュールがあります。GameStateモジュールは、ゲーム状態全体をフラットテンソル形式でホストすることでシミュレーション速度を高速化します。25個の組み込み述語を備えることで、研究者は複雑で高レベルな目標を明確に説明でき、イベントデータがタスクシステムの機能を効率的に拡張するための補助データストアも提供します。前バージョンと比べて3倍のパフォーマンス向上を達成したこのプラットフォームは、複雑なマルチエージェントの相互作用、リソース管理、強化学習における競争力の動的な研究空間です。
Neural MMO 2.0は、性能が向上し、CleanRLを含む人気のある強化学習フレームワークとの互換性があることで、重要な進歩を示しています。柔軟なタスクシステムにより、複雑なマルチエージェントの相互作用、リソース管理、競争力のダイナミクスを研究する貴重なツールとなります。Neural MMO 2.0は、マルチエージェント強化学習における新たな研究、科学的探求、進歩を促進するものです。計算効率の向上により、シミュレーション速度が向上し、目標の定義に対する効率的なデータ選択が可能となります。
Neural MMO 2.0における将来の研究は、未知のタスク、マップ、対戦相手に対して汎化性能を探求することに焦点を当て、新しい環境に対して適応性のあるエージェントのトレーニングを研究者に課すことになるでしょう。このプラットフォームの潜在能力は、より複雑な環境をサポートし、多様な学習と知能の側面を研究することを可能にします。継続的な改善と適応が推奨され、アクティブなユーザーコミュニティの形成を促進するためのサポートと開発が行われるでしょう。追加の強化学習フレームワークとの統合により、アクセシビリティが向上し、計算効率のさらなる向上により、シミュレーション速度と強化学習研究のデータ生成が改善されることが期待されます。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- このAI論文では、「PolyID:高性能バイオベースポリマーの発見における機械学習の先駆者」として、ポリ-ンにおける機械学習を紹介しています
- 「AIの力による消費者の支払い行動予測」
- 「バイオメディシンのための検索補完型生成(RAG)を行っていますか? MedCPTを利用してゼロショットのバイオメディカル情報検索を行いましょう:対話的な事前学習済みトランスフォーマーモデル」
- このAI論文では、コンピュータビジョンの基盤について包括的な分析を紹介し、事前学習モデルの強みと弱点を明らかにします
- このAI論文は、オープンエンドのシナリオでの大規模言語モデルのスケーラブルな評価のための新しいアプローチ、JudgeLMを紹介しています
- このAI論文では、GraphGPTフレームワークを紹介しています大規模な言語モデルのテクニックを使って、優れたゼロショット学習のパフォーマンスを実現するために、グラフニューラルネットワークを強化しています
- Luma AIがGenieを発売:テキストから3Dオブジェクトを作成できる新しい3D生成AIモデル