このAI論文は、効率的な水素燃焼予測のための画期的な機械学習モデルを紹介しています:「ネガティブデザイン」および反応化学におけるメタダイナミクスを活用しています

『画期的な機械学習モデルによる効率的な水素燃焼予測』〜「ネガティブデザイン」と反応化学のメタダイナミクスを活用〜

ポテンシャルエネルギーサーフェス(PES)は、原子または分子の位置とそれに関連するポテンシャルエネルギーの関係を表します。PESは分子の挙動、化学反応、物質の特性を理解する上で不可欠です。これらのサーフェスは、構成要素の原子または分子の位置が変化するにつれてシステムのポテンシャルエネルギーがどのように変化するかを記述します。これらのサーフェスはしばしば高次元で複雑であり、特に大きな分子またはシステムの場合には正確な計算が難しいです。

機械学習(ML)モデルの信頼性は、特に化学反応系の場合、高エネルギー状態を経験する必要があるため、トレーニングデータの多様性に強く依存します。MLモデルは、既知のトレーニングデータの間を補間しますが、予測はトレーニングセット内の分子や構成と似ていない場合には信頼性が低くなる可能性があります。

特定の反応系のためにバランスの取れた多様なデータセットを作成することは難しいです。機械学習モデルは依然として過学習の問題に苦しむことがあり、元のテストセットでは正確さが高いモデルでも、MDシミュレーションに適用するとエラーが発生する可能性があります。特にエネルギーの構成が非常に多様なガス相化学反応の場合です。

カリフォルニア大学、ローレンスバークレー国立研究所、ペンシルベニア州立大学の研究者は、最初の系統的なサンプル用の共通変数(CV)を用意することで、最初に設計された水素燃焼データセットを拡張するアクティブラーニングALワークフローを構築しました。彼らの研究は、PESのより完全なMLモデルを作成するために負の設計データ収集戦略が必要であることを反映しています。

このアクティブラーニング戦略に従うことで、彼らはより多様かつバランスの取れた最終的な水素燃焼MLモデルを実現しました。MLモデルは再トレーニングなしで正確な力を回復させ、軌道を続けることができました。彼らは水素燃焼における有限温度と圧力での遷移状態の変化と反応機構を予測することができました。

彼らのチームは、アクティブラーニングアプローチをRxn18の例で示しました。この例では、ポテンシャルエネルギーサーフェスが2つの反応座標、CN(O2-O5)とCN(O5-H4)に投影されました。MLモデルのパフォーマンスは、AIMDと正規モード計算から導かれた元のデータポイントを分析することによって追跡されました。アクティブラーニングのラウンドが進むにつれてメタダイナミクスシミュレーションを使用してサンプリングし、エラーが減少しました。

彼らは、メタダイナミクスを不安定な構造の効率的なサンプリングツールとして見つけ、そのようなデータを使用してMLモデルを再トレーニングすることによって、ALワークフローを通じてPESランドスケープの穴を特定するのに役立ちます。メタダイナミクスをサンプリングツールとしてのみ使用することにより、トリッキーなCV選択ステップを回避できます。彼らの将来の仕事には、デルタ学習のような別のアプローチの分析やC-GeMのようなより物理的なモデルでの作業も含まれています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

CommonCanvasをご紹介します:クリエイティブ・コモンズの画像を使ってトレーニングされたオープンな拡散モデル

人工知能は近年、テキストから画像生成において大きな進歩を遂げています。文章の説明を視覚的な表現に変換することは、コン...

機械学習

「拡散を支配するための1つの拡散:マルチモーダル画像合成のための事前学習済み拡散モデルの調節」

画像生成AIモデルは、ここ数ヶ月でこの領域を席巻しています。おそらく、midjourney、DALL-E、ControlNet、またはStable dDif...

機械学習

「物理学と流体力学に応用されたディープラーニング」

数値シミュレーションは、物理システムの挙動を理解するために何年も使用されてきました流体が構造物と相互作用する方法、応...

人工知能

「顔認識システムにおけるバイアスの解消 新しいアプローチ」

この記事では、顔認識システムにおけるバイアスに関する問題を探求し、開発者がこの問題を軽減するために採用できる潜在的な...

AI研究

「AWS 研究者がジェミニを紹介:大規模な深層学習トレーニングにおける画期的な高速障害回復」

ライス大学とAmazon Web Servicesの研究者チームが、GEMINIと呼ばれる分散トレーニングシステムを開発しました。このシステム...

AI研究

「ビジョン・トランスフォーマーの内部機能」

ビジョン・トランスフォーマー(ViTs)の内部動作を視覚化する際、研究者たちはランダムな背景パッチに注目の奇妙なスパイク...