このAI論文は、深層学習を用いて大規模な記録の神経活動を解読する人工知能フレームワーク、POYO-1を紹介しています

「POYO-1:大規模な記録された神経活動を解読するためのAIフレームワーク」

ジョージア工科大学、Mila、モントリオール大学、マギル大学の研究者らは、多様な大規模な神経記録を横断的にモデリングするためのトレーニングフレームワークとアーキテクチャを紹介しています。個々のスパイクをトークナイズして細かい時間的なニューラル活動をキャプチャし、クロスアテンションとPerceiverIOを骨子として使用します。7 つの非人間性霊長類のデータを使用して構築される大規模な複数セッションモデルには、27,000 個以上のニューラルユニットと100 時間以上の記録が含まれています。このモデルは新しいセッションに迅速に適応し、神経データ解析のスケーラブルなアプローチを示すさまざまなタスクでのフューショットパフォーマンスを可能にします。

彼らの研究では、トランスフォーマーを使用して多様な大規模な神経記録の神経集団ダイナミクスをモデル化するスケーラブルなフレームワークを紹介しています。以前のモデルとは異なり、このフレームワークは一連の固定セッションや単一のニューロンセットで操作するのではなく、さまざまな主体やデータソースのデータをトレーニングすることができます。PerceiverIOとクロスアテンション層を活用して、ニューラルイベントを効率的に表現し、新しいセッションでのフューショットパフォーマンスを可能にします。本研究は、トランスフォーマーの神経データ処理への潜在能力を示し、計算機能を向上させる効率的な実装を紹介しています。

機械学習の最近の進歩は、GPT のような大規模な事前トレーニング済みモデルのスケーリングの可能性を示しています。神経科学では、脳機能のより包括的な理解のために、さまざまなデータセット、実験、および被験者を結びつける基礎モデルが求められています。POYO は、さまざまな神経記録セッション間で効率的なトレーニングを実現し、対応するニューロンセットが不明な場合でも、さまざまな神経記録セッションを処理するためのフレームワークです。独自のトークナイゼーションスキームとPerceiverIOアーキテクチャを活用してニューラル活動をモデル化し、その移植性とセッション間の脳デコーディングの改善を示しています。

トークナイゼーションを使用して多様な記録にわたる神経活動のダイナミクスをモデル化し、時間の詳細をキャプチャし、クロスアテンションとPerceiverIOアーキテクチャを使用しています。広範な霊長類データセットでトレーニングされた大規模なマルチセッションモデルは、フューショット学習のための対応するニューロンのない新しいセッションに適応することができます。ローテーションポジションの埋め込みは、トランスフォーマーの注意メカニズムを強化します。このアプローチは神経活動に5ミリ秒のビニングを使用し、ベンチマークデータセットで詳細な結果を達成しています。

フレームワークは、NLB-Maze データセットの神経活動デコーディング効果を示すため、フレームワークを使用してR2値0.8952を達成しました。事前トレーニング済みモデルは、重みの変更なしで同じデータセットで競争力のある結果を提供し、その汎用性を示しています。フューショットパフォーマンスのための新しいセッションに迅速に適応する能力が示されました。大規模なマルチセッションモデルはさまざまなタスクで有望なパフォーマンスを示し、フレームワークの包括的な神経データ解析の潜在能力を強調しています。

結論として、神経集団デコーディングのための一体化かつスケーラブルなフレームワークは、フューショットパフォーマンスのための対応するニューロンのない新しいセッションへの迅速な適応能力を提供し、さまざまなタスクで強力なパフォーマンスを実現します。非人間霊長類のデータを用いてトレーニングされた大規模なマルチセッションモデルは、包括的な神経データ解析のフレームワークの潜在能力を示しています。このアプローチは、神経データ解析の進化を促進するための強力なツールを提供し、スケールでのトレーニングを可能にし、神経集団ダイナミクスに関する洞察を深めることができます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

Generating AI(AIを生成する) vs マシンラーニング(機械学習):区別の解読

「ジェネラティブAIと機械学習を使ってデータ駆動型の意思決定の世界を探検しましょうデータ変換におけるそれぞれの違いと役...

AI研究

「Googleの研究者が球面上でのディープラーニングのためのJAX向けのオープンソースライブラリを紹介します」

ディープラーニングは、入力から複雑な表現を自動的に学習する機械学習の一部です。その応用は、言語処理のための画像と音声...

データサイエンス

AIと機械学習のためのReactJS:強力な組み合わせ

このブログ記事では、ReactJSとAI/MLが組み合わされることで、パワフルでインタラクティブなウェブアプリケーションを構築す...

AI研究

マイクロソフトの研究者が提案するTaskWeaver:LLMを活用した自律エージェントの構築のためのコード優先の機械学習フレームワーク

大規模言語モデル(LLMs)は、印象的な自然言語生成および解釈能力を示しています。これらのモデルの例には、GPT、Claude、Pa...

機械学習

一緒にAIを学ぶ - Towards AI コミュニティニュースレター第4号

おはようございます、AI愛好者の皆さん! 今号では、Activeloopと共同で取り組んでいる大規模な言語モデル(LLM)のパフォー...

機械学習

「ジェネラティブAIおよびMLモデルを使用したメールおよびモバイル件名の最適化」

「ジェネレーティブAIとMLモデルを併用して、最大のエンゲージメントを得るために、トーンと対象読者に合わせた魅力的な件名...