このAI論文では、一般的なソース分布とターゲット分布の間の連続時間確率生成モデルの学習のための新しいクラスのシミュレーションフリーな目的を紹介しています

This AI paper introduces a new class of simulation-free objectives for learning continuous-time probabilistic generative models between a general source distribution and a target distribution.

複雑な分布を記述できる効果的な生成モデルの一つに、スコアベースの生成モデル(SBGM)があります。これには拡散モデルも含まれます。ほとんど常にガウス分布が用いられるソース密度の開発は、スコアベースの生成モデルを用いた確率微分方程式(SDE)のシミュレーションによって一般的に行われます。SBGMは、シミュレーションフリーのノイズ除去目標を最適化するためにガウス分布の仮定が必要であり、その経験的な成功にもかかわらず、ガウス分布の仮定が頻繁に崩れる物理的または生物学的システムの時間的発展の場合など、基礎となるダイナミクスを理解するためには制約があります。 

連続的な正規化フロー(CNF)、またはフローベースの生成モデルは、これらの問題を解決するための選択肢として広く使われています。ソース密度は、確定論的な連続時間生成プロセスの仮定に基づいて、普通の微分方程式(ODE)で目標密度に変換されます。以前の研究では、ガウス分布の仮定がされる場合にCNFがSBGMと競合するためのシミュレーションフリーのトレーニング目標が導入され、これらの目標は任意のソース分布の場合にも拡張されました。フローベースのモデルは、トレーニング時にODEの高価な積分を要求する非効率なシミュレーションベースのトレーニング目標によって以前は制約されていました。 

しかし、これらの目標はまだ確率的なダイナミクスを学習する必要があり、これは生成モデリングと実際のシステムのダイナミクスの回復の両方に役立つ可能性があります。シュレディンガーブリッジ問題(SB)は、特定の参照プロセスの下で、ソースとターゲットの確率分布間の最も確からしい発展を考慮します。これは2つの任意の分布間の確率的マッピングの基本的な確率論的定式化です。自然な確率的ダイナミカルシステム、平均場ゲーム、および生成モデリングなど、多くの問題においてSB問題が使用されています。SB問題は通常、特定の状況(ガウス分布など)を除いて、閉形式の解がなく、学習済みの確率過程を複製するための反復的な手法を用いて近似することができます。 

理論的には妥当なアプローチですが、これらの手法には高次元スケーリングしか許容しない数値的および実用的な問題があります。Mila Québec AI Institute、モントリオール大学、マギル大学、トロント大学、Vector Instituteの研究者は、シュレディンガーブリッジ問題に対するシミュレーションフリースコアとフローマッチング(2M)の目標を研究しています。2Mによって、CNFのシミュレーションフリーの目標と拡散モデルのノイズ除去トレーニング目標が同時に一般化され、それぞれ確率的ダイナミクスと任意のソース分布に対して拡張されます。彼らのアプローチでは、シュレディンガーブリッジはSB問題とエントロピック最適輸送(OT)の関係を用いて、ブラウニアンブリッジの集合のマルコビ化として定義されます。 

2Mでは、ソースとターゲットの分布間の静的なエントロピックOTマッピングを利用し、動的SBアプローチではなく、各反復でSDEをシミュレートする必要がある動的SBアプローチの代わりにSinkhorn法や確率的アルゴリズムによって効果的に近似されます。彼らは2Mの有用性を示すために、シミュレートされたデータと実世界のデータセットを使用します。人工データでは、2Mが生成モデリングの評価指標において他の先行研究と比較して優れた性能を発揮し、実際のシュレディンガーブリッジにより正確な近似を見つけることができます。彼らは実際のデータへの応用として、断面測定系列(つまり、対応のない時系列観測)をシュレディンガーブリッジの連続した系列としてモデリングすることを調査します。 

シュレディンガーブリッジを静的または低次元のダイナミック設定で細胞をモデリングするための先行研究はいくつかありましたが、2Mはシミュレーションを必要とせずに数千の遺伝子次元にスケーリングできる最初のアプローチです。彼らはまた、非ユークリッドコストを持つシュレディンガーブリッジの近似の現実世界での最初の使用例の一つである静的な多様体測地線マップを提供し、動的環境での細胞の補間を向上させます。最後に、彼らは静的最適輸送の例とは異なり、細胞のダイナミクスを制御する遺伝子間相互作用ネットワークを直接モデル化および再構築することができることを示します。コードと例はGitHubで利用可能です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「予算の制約を持つ学生や起業家のための7つの最高の無料AIツール」

「無料で利用できる最高の7つのAIツールを一つ一つ選びました何もありません何もない」

機械学習

AutoMLのジレンマ

「AutoMLは過去数年間、注目の的となってきましたそのハイプは非常に高まり、人間の機械学習の専門家を置き換えるという野心...

データサイエンス

埋め込みの類似検索:データ分析の画期的な変革

オラクルは、意味に基づいて文書を取り込み、保存し、取り出すための生成的AI機能を、クラウドデータ分析サービスに追加しました

データサイエンス

デジタルツインは現代の物流を革命化しますこうすればどうなるか

「デジタルツインは物理的な世界と仮想的な世界をつなげることで、物流を変革し、効率性を向上させ、無駄を削減し、そして産...

機械学習

「Gradio-liteと出会う:Pyodideを使用してブラウザでインタラクティブな機械学習ベースのライブラリ(Gradio)を向上させるJavaScriptライブラリ」

Gradioは、機械学習モデルのユーザーインターフェースの作成を簡略化するオープンソースのPythonライブラリです。開発者やデ...

人工知能

AIにおいて大胆であることは、最初から責任を持つことを意味します

GoogleのJames Manyika氏は、Googleが人々と社会に利益をもたらすためにAIを責任ある形で適用する方法について話しています