「LLMベースの自律エージェントの成長」の背後には、
「自律エージェントの成長のカギはLLMベースに」
2023年には多くの出来事がありました。大規模言語モデル(LLM)の成長と出現、およびそれらが自律エージェントの基本制御装置として特定の用途に使用されることが確認されました。私たちはそれを自分自身で確認しました。多くの人々がこれらの自律エージェントを採用し、組織に統合し、より多くの企業がLLMに興味を持っています。
そして、彼らは成功しています。
しかし、もっと知りたくありませんか?もちろん、そうです。
- 「オムニコントロール:拡張空間制御信号をテキスト条件付けされた人間の動作生成モデルに組み込むための人工知能アプローチ、拡散プロセスに基づく」
- 「FastEmbedをご紹介:高速かつ軽量なテキスト埋め込み生成のためのPythonライブラリ」
- GoogleのAIがPaLI-3を紹介:10倍も大きい似たモデルと比べて、より小型、高速、かつ強力なビジョン言語モデル(VLM)です
LLMベースの自律エージェントに関する調査
中国人民大学の高陵人工知能学院の研究者たちは、LLMベースの自律エージェントに関する包括的な調査を行いました。この調査では、LLMベースの自律エージェントの分野について総合的なレビューを行っています。
研究者たちは、LLMベースの自律エージェントの構築や、社会科学、自然科学、工学など、さまざまな分野での多様な応用の包括的な概要について調査しました。
さあ、始めましょう。
以下は、2021年1月から2023年8月までの出版論文の数を通じて、LLMベースの自律エージェントの分野の成長トレンドの画像です。
ご覧の通り、2年間でLLMは注目すべき成功を収め、AIアプリケーションが人間のような知能を獲得する可能性を広く示しました。総合訓練データセットと大量のモデルパラメータは、これを達成するために手を携えています。
このフィールドには多くの資金と研究が行われているようですので、将来の研究にインスピレーションを与えるために、これらの研究の複雑さともたらす利益を総合的に理解するために、急速に発展している分野の系統的な概要を提供することが重要です。
中国人民大学の高陵人工知能学院の研究チームが行っていることです。
LLMベースの自律エージェントのアーキテクチャデザイン
LLMベースの自律エージェントの目的は、人間のような能力を持つかのように様々なタスクを実行できることです。これを実現するために、LLMベースの自律エージェントのアーキテクチャデザインをさらに詳しく見てみる必要があります:
- LLMをより良く使用するためのアーキテクチャはどのように設計されるべきか
- エージェントが特定のタスクを達成するための能力を獲得する方法は何か
研究者たちは、LLMが人間のように自己進化するためには、特定の役割を果たし、環境から自律的に学習する必要があることを理解しました。これが設計合理的なエージェントアーキテクチャの重要性です。
研究者たちは、LLMを強化するために開発されたモジュールの数をまとめるための統一されたフレームワークを提案しています:
- プロファイル – エージェントの役割を特定する
- メモリ – エージェントを動的環境に配置し、過去の振る舞いを思い出すことができるようにする
- 計画 – エージェントを動的な環境に配置し、将来の行動を計画する
- アクション – エージェントの意思決定を具体的な出力に変換する
プロファイリングモジュールはメモリと計画モジュールに直接的な影響を与え、これらの3つのモジュールがアクションモジュールに影響を与えます。
各モジュールについて詳しく調べるには、この論文をお読みください:大規模言語モデルに基づく自律エージェントに関する調査。
この論文では、LLMベースの自律エージェントの応用と、社会科学、自然科学、工学の3つの異なる分野での評価戦略についてさらに詳しく見ることができます。LLMベースの自律エージェントは、複数の領域に影響を与える可能性がありますので、これらの応用がどのように評価され、どのような戦略が使用されるかを理解することは重要です。
研究プロセスの一環として、LLMベースのエージェントに関連するより包括的な論文を含むインタラクティブなテーブルも利用可能です。
まとめ
見てきたように、LLMに関して皮を剥いで知りたいという人が増えています。アーキテクチャや評価戦略、そして将来に与える影響について、もっと知りたいという人々が増えています。これはLLMやAIアプリケーション全般に対する信頼構築のためなのか、それとも真実を知るためなのか、私たちはどちらかを学ぶのでしょうか?
****[Nisha Arya](https://www.linkedin.com/in/nisha-arya-ahmed/)****はデータサイエンティストであり、フリーランスの技術ライターです。彼女は特にデータサイエンスのキャリアアドバイスやチュートリアル、理論に基づく知識提供に興味があります。また、人間の寿命の長さに対する人工知能の異なる恩恵を探求したいとも思っています。広範な技術知識と執筆スキルを広げながら、他の人々をガイドするのをお手伝いします。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- MITの新しいAI研究は、深層ニューラルネットワークが私たちとは異なる方法で世界を見ていることを示しています
- 「MatFormerをご紹介します:プラットフォーム間で柔軟なモデル展開を可能にする、汎用なネストされたTransformerアーキテクチャ」
- In Japanese, the title would be written as 「プロのようにChatGPT 4Visionを活用する7つの方法」(Puro no you ni ChatGPT 4Vision o katsuyou suru nanatsu no houhou).
- ジェネラティブ人工知能を解明:拡散モデルと視覚コンピューティングの進化についての詳細な解説
- SalesForce AIはCodeChainを導入:代表的なサブモジュールによる自己改訂の連鎖を通じたモジュラーコード生成のための革新的な人工知能フレームワーク
- QLoRA:16GBのGPUで大規模な言語モデルの訓練を行う
- 大規模なMLライフサイクルの統治、パート1:Amazon SageMakerを使用してMLワークロードを設計するためのフレームワーク