Pythonでの機械学習のためのテキストの前処理−自然言語処理

自然言語処理のためのPythonによるテキスト前処理と機械学習

キリル・ドブレフによる写真

一部の一般的なテキスト前処理の技術Pythonの例とともに

このソーシャルメディアとオンラインビジネスの時代では、テキストデータが様々な場所から来ます。 しかし、テキストデータの取り扱いはトリッキーです。 生のテキストにはあらゆる種類の不純物、不要なノイズ、綴りの間違いなどが含まれる場合があります。 そのため、テキストデータのモデリングに入る前に、適切な前処理を行う必要があります。

この記事では、テキストデータを機械学習向けに準備するための一般的なテキスト前処理の手法に取り組みます。

数値の削除

テキスト中の数値は、機械学習モデルにとって欺瞞的な場合があります。 なぜなら、結局のところ、テキストは数値として変換する必要があるからです。 各テキストは数字として変換されます。 テキストに再び数値が含まれている場合、それらの数値には不必要に干渉する可能性があります。 そのため、数値の削除は役に立ちます。

ここでは、正規表現を使用して数値を削除しました。 そのため、まず ‘re’をインポートする必要がありました。

 import re  text = "クラスAには35人の学生がいます。 クラスBには29人の学生がいますが、全員が数学が得意です。"res = re.sub(r'\ d + '、 ''、 text)res 

出力:

 'クラスAには学生がいます。 クラスBには学生がいますが、全員が数学が得意です。' 

すべての数値がテキストからなくなりました。

余分なスペースの削除

これはまた別の面白い問題です。 時には、生データに先頭や末尾に余分なスペースが入ってくることがありますが、問題には見えません。 しかし、問題を引き起こす可能性があります。 余分なスペースがある場合、同じ単語が2つの異なる単語として表示される場合があります。 たとえば、モデルを開発する際に単語「曲」の先頭に余分なスペースを追加すると、スペースのみの違いから「音楽」だけでなく別の単語と見なされる可能性があり、モデルのパフォーマンスに悪影響を与えるかもしれません。

 st = "結果は素晴らしかった "st.strip() 

出力:

 '結果は素晴らしかった' 

先頭と末尾のスペースがなくなりました。

私はKaggleからtwitter.csvデータを使用しました…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「ジェネレーティブAI 2024年とその先:未来の一瞥」

「ジェネレーティブAIファブリックの台頭から倫理が新しいNFRとなるまで、ジェネレーティブAI技術が2024年にもたらすものを探...

機械学習

「LLM Fine-Tuningの理解:大規模言語モデルを独自の要件に合わせる方法」

「Llama 2のような大規模言語モデル(LLM)の微調整技術の最新の進展を探索してくださいLow-Rank Adaptation(LoRA)やQuanti...

機械学習

ソフトウェアエンジニアリングの未来 生成AIによる変革

この記事では、Generative AI(およびLarge Language Models)の出現と、それがソフトウェアエンジニアリングの将来をどのよ...

AI研究

「UCSCとTU Munichの研究者が、余震を予測するための新しいディープラーニングベースのモデルであるRECASTを提案する」

人工知能はほぼすべての可能な分野に進出しています。この領域では広範な研究が行われています。私たちはまだまだ発見すべき...

データサイエンス

Deep Learningモデルのトレーニングをスーパーチャージ

90%に到達すると精度が初めのほうでは簡単に向上しますが、それ以上の改善を得るためには非常に力を入れなければならないとい...

AI研究

腫瘍の起源の解読:MITとDana-Farber研究者が機械学習を活用して遺伝子配列を分析する方法

MITとDana-Farber Cancer Instituteの画期的な共同研究により、機械学習の力ががん治療における困難な課題に取り組むために活...