「コンピュータビジョン、言語モデルが見たものを理解するのをサポートする」

Supporting the understanding of what computer vision and language models see.

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_print { background:url(‘/images/icons/print.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_print:hover { background:url(‘/images/icons/print.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.mobile-apps { background:url(‘/images/icons/generic.gif’) no-repeat 13px 7px #FFF; background-size: 10px; } .fav_bar a.mobile-apps:hover { background:url(‘/images/icons/generic.gif’) no-repeat 13px 7px #e6e9ea; background-size: 10px} .fav_bar a.fav_de { background: url(/images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(/images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘/images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘/images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘/images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘/images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

MIT researchers created a new annotated synthetic dataset of images that depict a wide range of scenarios, which can be used to help machine-learning models understand the concepts in a scene. ¶ Credit: Khaled Shehada et al.

マサチューセッツ工科大学の研究者は、コンピュータ生成のデータを使用して、ビジョンと言語モデルが概念をより良く理解するのを支援する技術を開発しました。

研究者たちは、注釈付きの合成データセットを使用して、人気のあるビジョンと言語モデルを微調整し、概念の理解精度を最大10%向上させました。

彼らは、多様な3次元環境とオブジェクトのコンピュータ生成の合成ビデオを使用して、約80万枚の写真のような画像を生成しました。これには、それらと対話するためにヒューマンアバターが追加されました。

各画像には、オブジェクトの属性、位置関係、人間とオブジェクトの相互作用についての詳細なキャプションが付けられました。

合成データにより、実データを生成するよりも多様な画像を低コストで作成することができ、アバターの使用によりプライバシーを保護することができました。MIT Newsの記事を参照してください。

抄録の著作権は2023年のSmithBucklin、ワシントンDC、アメリカに帰属しています

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIテクノロジー

シンガポールがAIワークフォースを3倍に増やす予定

シンガポールは、人工知能の分野に目を向けています。国家AI戦略(NAIS)2.0の発表により、この都市国家は次の3〜5年でAIの労...

AIニュース

「NotebookLMは12以上の新機能を追加します」

「アメリカで現在利用可能なNotebookLMには、読みやすくメモを取り、執筆プロジェクトを整理するための新機能が追加されまし...

AI研究

GoogleがNotebookLMを導入:あなた専用の仮想研究アシスタント

Googleは、Google Labsから最新の実験的な提供であるNotebookLMを発表しています。以前はProject Tailwindとして知られていた...

データサイエンス

自然言語処理のタクソノミー

「異なる研究分野と最近の自然言語処理(NLP)の進展の概要」

AI研究

「UCSCとTU Munichの研究者が、余震を予測するための新しいディープラーニングベースのモデルであるRECASTを提案する」

人工知能はほぼすべての可能な分野に進出しています。この領域では広範な研究が行われています。私たちはまだまだ発見すべき...

機械学習

中国における大量生産自動運転の課題

自律走行は、世界でも最も困難な運転の一つが既に存在する中国では、特に難しい課題です主に3つの要因が関係しています:動的...