「学習におけるマウスの驚くべきアプローチを解読する研究」を学ぶ

Study on deciphering the amazing approach of mice in learning

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_print { background:url(‘/images/icons/print.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_print:hover { background:url(‘/images/icons/print.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.mobile-apps { background:url(‘/images/icons/generic.gif’) no-repeat 13px 7px #FFF; background-size: 10px; } .fav_bar a.mobile-apps:hover { background:url(‘/images/icons/generic.gif’) no-repeat 13px 7px #e6e9ea; background-size: 10px} .fav_bar a.fav_de { background: url(/images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(/images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘/images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘/images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘/images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘/images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

ニューロサイエンティストは、マウスが安定したルールを推測することが最適な戦略であるタスクに直面した場合、マウスはそのように学ぶが、代替戦略を完全に放棄することはないことを発見しました。 ¶ クレジット: David Orenstein/Picower Institute/Adobe Stock

マサチューセッツ工科大学(MIT)の神経科学者は、報酬を受けるためにマウスが左右にハンドルを回すことを教えることを目的として、マウスの行動を研究しました。

タスクでは、報酬のある側面が15〜25回ごとに切り替わりました。

チームは、マウスがゲームの各”ブロック”で複数の戦略を使用していることに気づきました。

使用されている戦略を分離するために、チームはHidden Markov Model(HMM)を利用しました。HMMは、一つの見えない状態が他の見えない状態と比べて結果を生み出しているかどうかを計算的に決定することができます。

チームはまず、HMMを適応させてブロックの途中での選択の推移を説明する必要がありました。

「blockHMM」を適用したタスクパフォーマンスの計算シミュレーションにより、アルゴリズムは人工エージェントの真の隠れ状態を推論することができることが示されました。

著者はこの技術を使用して、マウスが持続的に複数の戦略を組み合わせ、さまざまなパフォーマンスレベルを達成していることを示しました。MITニュースの記事全文をご覧ください。

要約の著作権は2023年SmithBucklin、ワシントンD.C.、アメリカに帰属します。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「データ統合とAIによる洞察力」

業界全般において意思決定と自動化の向上のためのデータ統合とAIの変革的な相乗効果を探求する

人工知能

ChatGPTのデジタル商品をオンラインで販売するプロンプト

ChatGPTは、オンラインでデジタル製品を販売して収益を上げたい人にとって、ありがたい存在です

データサイエンス

「LLMsが幻覚を見るのを止めることはできますか?」

ほぼすべての人々の注目を集めている大規模言語モデル(LLM)ですが、このような技術の広範な展開は、それに関連するやや厄介...

AIニュース

メタが「AudioCraft」を発表:テキストを音声や音楽に変換するためのAIツール

Metaは、Facebook、Instagram、WhatsAppなどのソーシャルメディアプラットフォームを展開しているテックジャイアントであり、...

機械学習

このAIニュースレターは、あなたが必要なもの全てです#58

今週、私たちはNLPの領域外でAIの2つの新しい進展を見ることに興奮しましたMeta AIの最新の開発では、彼らのOpen Catalystシ...