スタンフォード研究者がGLOWとIVESを使用して、分子ドッキングとリガンド結合位姿の予測を変革しています

「スタンフォード研究者によるGLOWとIVESの革命的な活用:分子ドッキングとリガンド結合位姿の予測が進化する」

ディープラーニングは、スコアリング関数の改善により、分子ドッキングの向上の可能性を持っています。現在のサンプリングプロトコルは、正確なリガンド結合ポーズを生成するために事前情報が必要であり、スコアリング関数の正確さが制限されています。GLOWとIVESという2つの新しいプロトコルは、スタンフォード大学の研究者によって開発され、この課題に対応し、ポーズのサンプリング効果を向上させることを示しています。AlphaFoldで生成されたタンパク質構造を含むさまざまなタンパク質構造でのベンチマークテストにより、これらの手法の妥当性が確認されています。

分子ドッキングにおけるディープラーニングは、しばしば剛体タンパク質ドッキングデータセットに依存しており、タンパク質の柔軟性を無視しています。一方、柔軟ドッキングはタンパク質の柔軟性を考慮していますが、精度が低い傾向があります。GLOWとIVESは、これらの制限に対応する高度なサンプリングプロトコルであり、特に動的結合ポケットでベースラインメソッドを常に上回っています。これは、タンパク質リガンドドッキングにおけるリガンドポーズのサンプリングを改善するために重要であり、ディープラーニングベースのスコアリング関数の向上に重要です。

分子ドッキングは、薬物探索においてタンパク質結合サイトへのリガンド配置を予測します。従来の方法は正確なリガンドポーズの生成に課題を抱えています。ディープラーニングは正確性を向上させることができますが、効果的なポーズのサンプリングに依存しています。GLOWとIVESは、チャレンジングなシナリオに対してサンプルを改善し、正確性を向上させるための進んだサンプリングプロトコルです。AlphaFoldで生成された未リガンド化または予測されたタンパク質構造に適用可能であり、キュレーションされたデータセットとオープンソースのPythonコードも提供しています。

GLOWとIVESは、分子ドッキングのための2つのポーズサンプリングプロトコルです。GLOWはソフト化された分散力ポテンシャルを利用してリガンドポーズを生成し、IVESは複数のタンパク質構造を組み込むことで正確性を向上させます。ベースラインメソッドとのパフォーマンス比較により、GLOWとIVESの優位性が示されています。クロスドッキングケースにおける正しいポーズの割合を測定するテストセットの評価は、IVESの効率において重要なシードポーズの品質を示しています。

GLOWとIVESは、リガンドポーズのサンプリングにおいてベースラインメソッドを上回る正確性を持ち、チャレンジングなシナリオやAlphaFoldベンチマークにおいて顕著なタンパク質の構造変化にも優れています。テストセットの評価により、正しいポーズのサンプリング確率の優越性が確認されています。IVESは複数のタンパク質構造を生成することで、タンパク質構造の幾何学的なディープラーニングにおいて、より少ない構造でSchrodinger IFD-MDと同様のパフォーマンスを達成します。GLOWとIVESによって生成された5,000のタンパク質リガンドペアのリガンドポーズデータセットは、ディープラーニングベースのスコアリング関数の開発と評価において貴重なリソースとなります。

https://arxiv.org/abs/2312.00191

結論として、GLOWとIVESは、基本的な技術よりも効果的な2つのポーズサンプリング方法であり、特に困難なシナリオとAlphaFoldベンチマークにおいて優れた性能を発揮しています。IVESでは複数のタンパク質構造が生成されるため、幾何学的ディープラーニングに非常に有利です。また、GLOWとIVESが提供する5,000のタンパク質リガンドペアのリガンドポーズを含むデータセットは、分子ドッキングのディープラーニングベースのスコアリング関数に取り組んでいる研究者にとって貴重な資源です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

AWS上で動作する深層学習ベースの先進運転支援システムのための自動ラベリングモジュール

コンピュータビジョン(CV)では、興味のあるオブジェクトを識別するためのタグを追加したり、オブジェクトの位置を特定する...

機械学習

「Amazon Textract、Amazon Bedrock、およびLangChainによるインテリジェントドキュメント処理」

今日の情報時代において、無数の書類に収められた膨大なデータ量は、企業にとって挑戦と機会を同時にもたらします従来の書類...

人工知能

「人工知能と自由意志」

人工知能の非凡な能力は今や明白です例えば、チェスをプレイするような特定のことは、AIがどんな人間よりも優れて行えますし...

機械学習

「One-2-3-45++に出会ってみましょう:おおよその1分で単一の画像を詳細な3Dテクスチャメッシュに変換する革新的な人工知能手法」

UCサンディエゴ、浙江大学、清華大学、UCLA、およびスタンフォード大学の研究者たちは、高速かつ高品質な3Dオブジェクト生成...

データサイエンス

「データ統合の未来のトレンド」

クラウドソリューションやリアルタイム分析から機械学習まで、データ統合の将来を探求するこの進化する風景で、適応性が鍵となる

データサイエンス

「H3とPlotlyを使用してヘキサゴンマップを構築する:包括的なチュートリアル」

通常、私たちはチョロプレス地図を使用して、領土全体の変数を可視化する場合、一般的に知られている行政地理を使用しますた...