スタンフォード研究者がGLOWとIVESを使用して、分子ドッキングとリガンド結合位姿の予測を変革しています

「スタンフォード研究者によるGLOWとIVESの革命的な活用:分子ドッキングとリガンド結合位姿の予測が進化する」

ディープラーニングは、スコアリング関数の改善により、分子ドッキングの向上の可能性を持っています。現在のサンプリングプロトコルは、正確なリガンド結合ポーズを生成するために事前情報が必要であり、スコアリング関数の正確さが制限されています。GLOWとIVESという2つの新しいプロトコルは、スタンフォード大学の研究者によって開発され、この課題に対応し、ポーズのサンプリング効果を向上させることを示しています。AlphaFoldで生成されたタンパク質構造を含むさまざまなタンパク質構造でのベンチマークテストにより、これらの手法の妥当性が確認されています。

分子ドッキングにおけるディープラーニングは、しばしば剛体タンパク質ドッキングデータセットに依存しており、タンパク質の柔軟性を無視しています。一方、柔軟ドッキングはタンパク質の柔軟性を考慮していますが、精度が低い傾向があります。GLOWとIVESは、これらの制限に対応する高度なサンプリングプロトコルであり、特に動的結合ポケットでベースラインメソッドを常に上回っています。これは、タンパク質リガンドドッキングにおけるリガンドポーズのサンプリングを改善するために重要であり、ディープラーニングベースのスコアリング関数の向上に重要です。

分子ドッキングは、薬物探索においてタンパク質結合サイトへのリガンド配置を予測します。従来の方法は正確なリガンドポーズの生成に課題を抱えています。ディープラーニングは正確性を向上させることができますが、効果的なポーズのサンプリングに依存しています。GLOWとIVESは、チャレンジングなシナリオに対してサンプルを改善し、正確性を向上させるための進んだサンプリングプロトコルです。AlphaFoldで生成された未リガンド化または予測されたタンパク質構造に適用可能であり、キュレーションされたデータセットとオープンソースのPythonコードも提供しています。

GLOWとIVESは、分子ドッキングのための2つのポーズサンプリングプロトコルです。GLOWはソフト化された分散力ポテンシャルを利用してリガンドポーズを生成し、IVESは複数のタンパク質構造を組み込むことで正確性を向上させます。ベースラインメソッドとのパフォーマンス比較により、GLOWとIVESの優位性が示されています。クロスドッキングケースにおける正しいポーズの割合を測定するテストセットの評価は、IVESの効率において重要なシードポーズの品質を示しています。

GLOWとIVESは、リガンドポーズのサンプリングにおいてベースラインメソッドを上回る正確性を持ち、チャレンジングなシナリオやAlphaFoldベンチマークにおいて顕著なタンパク質の構造変化にも優れています。テストセットの評価により、正しいポーズのサンプリング確率の優越性が確認されています。IVESは複数のタンパク質構造を生成することで、タンパク質構造の幾何学的なディープラーニングにおいて、より少ない構造でSchrodinger IFD-MDと同様のパフォーマンスを達成します。GLOWとIVESによって生成された5,000のタンパク質リガンドペアのリガンドポーズデータセットは、ディープラーニングベースのスコアリング関数の開発と評価において貴重なリソースとなります。

https://arxiv.org/abs/2312.00191

結論として、GLOWとIVESは、基本的な技術よりも効果的な2つのポーズサンプリング方法であり、特に困難なシナリオとAlphaFoldベンチマークにおいて優れた性能を発揮しています。IVESでは複数のタンパク質構造が生成されるため、幾何学的ディープラーニングに非常に有利です。また、GLOWとIVESが提供する5,000のタンパク質リガンドペアのリガンドポーズを含むデータセットは、分子ドッキングのディープラーニングベースのスコアリング関数に取り組んでいる研究者にとって貴重な資源です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

「最高のAI音楽生成器(2023年9月)」

人工知能(AI)音楽生成器は、音楽を作成するコンピュータプログラムです。これは、ニューラルネットワークを利用して完全に...

AI研究

「ハリー・ポッターとは誰なのか?Microsoft ResearchのLLMの概念の忘却を精緻化する方法の内部」

大規模言語モデル(LLM)は、通常、膨大な量の未ラベルデータで定期的にトレーニングされますこれにより、非常に多様な主題の...

データサイエンス

クラウドコンピューティングとウェアラブルデバイス:強力な組み合わせ

クラウドコンピューティングは、データの保存と処理によってウェアラブルデバイスを強化し、リアルタイムの接続性とスケーラ...

データサイエンス

複雑なトピックに取り組む際、最初の一歩が一番難しいです

「初心者であること」は、一度通り抜けていつまでも忘れ去るものではありません常に継続的な学びと成長に取り組んでいる限り...

データサイエンス

「Meta AIは、社会的な具現化されたAIエージェントの開発における3つの主要な進展、Habitat 3.0、Habitat Synthetic Scenes Dataset、およびHomeRobotを紹介します」

Facebook AI Research (FAIR)は、社会的にインテリジェントなロボットの分野を推進することに専念しています。主な目標は、日...

機械学習

セールスフォース・アインシュタイン:あなたは顧客との関係を築きます、AIがそれらを自動的に維持する手助けをします

「顧客関係管理(CRM)」は、現在のハイパーコネクテッドで競争の激しい商業環境において、組織の成功を促進するために極めて...