スタンフォードの研究者たちはPLATOを発表しました:知識グラフに拡張された正則化を用いた高次元、低サンプルの機械学習の過適合に取り組むための斬新なAIアプローチ

「スタンフォードの研究者がPLATOを発表:知識グラフ拡張と正則化を使った高次元、低サンプル機械学習の過適合への新しいAIアプローチ」

ナレッジグラフ(KG)は、ノードとエッジとして情報を格納するグラフベースのデータベースです。一方、マルチレイヤーパーセプトロン(MLP)は、機械学習で使用されるニューラルネットワークの一種です。MLPは、複数の層に配置された相互接続されたノードで構成されています。各ノードは前の層からの入力を受け取り、次の層に出力を送信します。

スタンフォード大学の研究者たちは、KGを活用して補助的なドメイン情報を提供するための新しい機械学習モデルであるPLATOを紹介しました。 PLATOは、KG内の類似したノードがMLPの最初の層の重みベクトルを持つことを保証する帰納的なバイアスを導入することで、MLPを正則化します。この方法は、多くの次元を持つ表形式のデータセットを含むタブラーデータがサンプルよりも多い場合に機械学習モデルが助けが必要な課題に対処します。

PLATOは、特徴の数よりもデータサンプルの数が遥かに多い表形式のデータセットの未開拓シナリオに対処し、NODEやタブラートランスフォーマーなどの他の深層タブラーモデル、およびPCAやLASSOなどの従来のアプローチと異なり、正則化のためのKGを導入します。グラフ正則化方法とは異なり、PLATOはKG内の特徴ノードと非特徴ノードを組み合わせています。これにより、KGを事前情報として異なる表形式のデータセットでの予測に対してMLPモデルの重みを推定します。

機械学習モデルはデータ豊富な環境で優れたパフォーマンスを発揮することが多い一方で、特徴の数がサンプルの数を大幅に上回る表形式のデータセットでは支援が必要です。この差異は特に科学データセットにおいて顕著であり、モデルのパフォーマンスが制限されます。既存の表形式の深層学習手法は主に例が特徴よりも多いシナリオに焦点を当てており、特徴がサンプルよりも多いローデータ領域では従来の統計手法が主流です。これを解決するために、MLPを正則化するための補助KGを活用するPLATOは、高次元の特徴と限られたモデルを持つデータセットにおけるディープラーニングを可能にし、優れたパフォーマンスを発揮します。

補助KGを活用することで、PLATOは各入力特徴をKGノードと関連付け、ノードの類似性に基づいてMLPの最初の層の重みベクトルを推定します。この手法は、メッセージパッシングの複数のラウンドを用いて特徴の埋め込みを洗練します。PLATOはKG内の浅いノード埋め込み手法(TransE、DistMult、ComplEx)において一貫したパフォーマンスを示す消失実験を行います。この革新的な手法は、データに乏しい表形式の設定におけるディープラーニングモデルの改善の可能性を提供します。

高次元の特徴と限られたサンプルを持つ表形式のデータに対するPLATOは、6つのデータセット全体で13の最先端ベースラインを最大10.19%上回ります。パフォーマンスの評価は、モデルごとに500の設定でランダムサーチを行い、予測値と実際の値のピアソン相関の平均と標準偏差を報告して行われます。結果は、PLATOの効果を裏付け、データに乏しい状況での堅牢なパフォーマンスを達成するための補助KGの活用を示しています。多様なベースラインに対する比較分析は、PLATOの優位性を明確にし、表形式のデータセットの予測の向上における有効性を立証しています。

まとめると、以下のポイントで研究内容を要約することができます:

  • PLATOは表形式のデータのためのディープラーニングフレームワークです。
  • 各入力特徴は補助KG内のノードに似ています。
  • PLATOはMLPを制御し、高次元の特徴と限られたサンプルを持つ表形式のデータで堅牢なパフォーマンスを達成します。
  • このフレームワークは、KGノードの類似性に基づいて重みベクトルを推定し、類似の入力特徴は類似の重みベクトルを共有するという帰納的なバイアスを捉えます。
  • PLATOは6つのデータセットで13のベースラインを最大10.19%上回ります。
  • 補助KGの使用は、データが乏しい状況でのパフォーマンス向上を示します。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

OpenAIのChatGPTが音声と画像の機能を発表:AI対話における革命的な飛躍

オープンAIは、AIとの人間の対話を革新するために、ChatGPTに音声と画像の機能を導入することで、大きな進化を遂げようとして...

人工知能

「2023年の写真とビデオのための10のAIディープフェイクジェネレーター」

AIのディープフェイク生成器や人工知能を使用したソフトウェアツールを使うと、言ったりしたこともしなかったこともない人々...

AIニュース

「IIT卒業生のAIによるカバーレターが皆を爆笑させる」

事件の風刺的な展開の中で、あるIIT(インド工科大学)の卒業生が人工知能を活用してカバーレターを作成しようとした結果、大...

データサイエンス

2023年の機械学習研究におけるトップのデータバージョン管理ツール

生産に使用されるすべてのシステムはバージョン管理する必要があります。ユーザーが最新のデータにアクセスできる単一の場所...

機械学習

より小さい相手による言語モデルからの知識蒸留に深く潜入する:MINILLMによるAIのポテンシャルの解放

大規模言語モデルの急速な発展による過剰な計算リソースの需要を減らすために、大きな先生モデルの監督の下で小さな学生モデ...

データサイエンス

PandasAIの紹介:GenAIを搭載したデータ分析ライブラリ

イントロダクション 最近、ジェネレーティブ人工知能の分野で急速な発展とブレークスルーがあり、データ分野においても大きな...