スタンフォード大学、コーネル大学、オックスフォード大学の新しいAI研究は、単一の画像のわずかなインスタンスからオブジェクトの固有性を発見する生成モデルを紹介しています
Stanford, Cornell, and Oxford Universities have introduced a new AI research that presents a generative model to discover the specificity of objects from just a few instances within a single image.
バラの本質は、その独特の形状、質感、および材料組成で構成されています。これを使用して、さまざまな位置で、さまざまな形状のバラをさまざまな照明効果で作成できます。各バラが独自のピクセル値セットを持っていても、それらを同じクラスのメンバーとして識別できます。
Stanford、Oxford、およびCornell Techの研究者たちは、単一の写真からのデータを使用して、異なる視点と照明から新しい形状と画像を生成できるモデルを作成することを望んでいます。
この問題を解決するためには、3つの障壁があります:
- UCバークレーとMeta AIの研究者らは、トラックレット上で3Dポーズとコンテキスト化された外観を融合することにより、ラグランジュアクション認識モデルを提案しています
- AIの汎化ギャップに対処:ロンドン大学の研究者たちは、Spawriousという画像分類ベンチマークスイートを提案しましたこのスイートには、クラスと背景の間に偽の相関が含まれます
- テキストから画像合成を革新する:UCバークレーの研究者たちは、強化された空間的および常識的推論のために、大規模言語モデルを2段階の生成プロセスで利用しています
- トレーニングデータセットには1枚の画像しかなく、数百のインスタンスしかありません。
- これらの数少ない状況には、幅広い可能なピクセル値があります。これは、姿勢も照明条件も記録されていないか、または不明であるためです。
- どのバラも同じではなく、形状、質感、材料の分布をキャプチャする必要があります。したがって、推論されるオブジェクト固有量は確定的ではなく、確率的です。これは、静的なオブジェクトやシーンに対する現在のマルチビュー再構成またはニューラルレンダリングアプローチと比較して、重要な変更です。
提案されたアプローチは、モデル作成にバイアスを誘導するためにオブジェクト固有量を出発点としています。これらのルールには2つの部分があります:
- 提示されるインスタンスはすべて、同じオブジェクト固有量またはジオメトリ、質感、材料の分布を持つ必要があります。
- 固有の特性は、レンダリングエンジンによって定義され、最終的には物理世界によって定義された特定の方法で相互に関連しています。
より具体的には、彼らのモデルは、単一の入力画像を取り、インスタンスマスクのコレクションとインスタンスの特定のポーズ分布を使用して、オブジェクトの3D形状、表面反射率、および艶の分布のニューラル表現を学習し、姿勢と照明の変動の影響を排除します。この物理的に基礎づけられた明示的な分離は、彼らのインスタンスの簡単な説明を支援します。モデルは、単一の画像によって提供される疎な観測に過剰適合することなく、オブジェクト固有量を取得することができます。
研究者たちが言及するように、その結果得られたモデルによって、多くの異なる用途が可能になります。たとえば、学習されたオブジェクト固有量からランダムにサンプリングすることで、異なるアイデンティティを持つ新しいインスタンスを生成できます。外部要素を調整して、新しいカメラ角度や照明セットアップで合成インスタンスを再レンダリングすることができます。
チームは、モデルの改良された形状再構成と生成性能、革新的なビュー合成、およびリライト性能を示すために、徹底的なテストを実施しました。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- Meta AIとSamsungの研究者が、学習率適応のための2つの新しいAI手法、ProdigyとResettingを導入し、最先端のD-Adaptation手法の適応率を改善しました
- サリー大学の研究者たちは、機械学習における画像認識を革新するスケッチベースの物体検知ツールを開発しました
- LinkedInとUCバークレーの研究者らは、AIによって生成されたプロフィール写真を検出する新しい方法を提案しています
- 私の博士号入学への道 – 人工知能
- Google研究者がAudioPaLMを導入:音声技術における革新者 – 聞き、話し、そして前例のない精度で翻訳する新しい大規模言語モデル
- 計算機の進歩により、研究者はより高い信頼性で気候をモデル化することができるようになります
- ロボットの犬がMJスタイルでムーンウォークをする:このAI研究は、コードで表現された報酬を、LLMと最適化ベースのモーションコントローラーの間の柔軟なインターフェースとして使用することを提案しています