小さな言語モデルでも高い性能を発揮できるのか?StableLMに会ってみてください:適切なトレーニングで高性能なテキストとコードを生成できるオープンソースの言語モデル

StableLMは小さな言語モデルでも高性能なテキストやコードを生成できるオープンソースの言語モデルです

Stability AIは、Stable Diffusion画像生成AI技術で知られる人工知能のスタートアップ企業です。今日、Stability AIはStableLMという新しい無料かつオープンソースの言語モデルを発表しました。このモデルはアルファフェーズで3つの異なるパラメータサイズ(30億、70億、150億、650億)で提供されます。CC BY-SA-4.0ライセンスの規則により、開発者はStableLMの基本モデルを個人や商業プロジェクトで確認、利用、修正することができます。

独自のAIに対するオープンかつ拡張可能で透明性の高い代替手段を提供する画期的なStable Diffusion画像モデルは、2022年にStability AIの努力によって一般に公開されました。Stability AIはStableLMモデルセットをリリースし、基本的なAIの能力を民主化するという使命をさらに推進しています。StableLMモデルは、テキストやコードの生成能力を持つさまざまなアプリケーションを活性化させます。これらのモデルは、小規模で効率的なモデルが優れたパフォーマンスを発揮する方法を示しています。

チームの以前のEleutherAIという非営利研究ハブとのオープンソースの共同作業により、StableLMのリリースの基盤が整いました。Pileというオープンソースのデータセットを使用して、GPT-J、GPT-NeoX、およびPythiaスイートなど、いくつかの人気のある言語モデルをトレーニングしました。Cerebras-GPTやDolly-2は、これらの以前のモデルを拡張した多くの新しいオープンソースの言語モデルのうちの2つの例です。

StableLMを教えるために使用される実験用のデータセットは、The Pileをベースにしており、トークン数は1.5兆個で3倍の大きさです。1750億のパラメータを持つGPT-3に対して、StableLMはこのデータセットの豊富さにより、会話やコーディングのタスクにおいて予想外に優れたパフォーマンスを達成しています。データセットに関する情報は後日公開されます。

彼らは、教室での使用に最適化された研究モデルのコレクションをリリースしました。これらの洗練されたモデルは、最近リリースされたオープンソースの会話エージェントのデータセット(Alpaca、GPT4All、Dolly、ShareGPT、HH)のデータを最初に使用します。StanfordのAlpacaライセンスに従い、これらのチューニングされたモデルは学術研究用に非営利のCC BY-NC-SA 4.0ライセンスで利用できます。

StableLMは、以下の機能を通じて、オープンでアプローチ可能で支援的なAI技術の開発を目指すチームのビジョンを描いています:

  1. 透明性:研究者はパフォーマンスを確認し、解釈可能なアプローチを確立し、危険を特定し、セーフガードの作成を支援するために「中身を見る」ことができます。企業や政府機関は、個人情報を開示することなく、またAIの能力に対する権限を放棄することなく、これらのオープンソースモデルを自分たちのニーズに合わせて修正(または「調整」)することができます。
  2. アクセシビリティ:チームは一般の人々が自分たちのデバイスでモデルを利用できるようにエッジに構築しています。わずかな数の企業の専用サービスに依存するのではなく、開発者はこれらのモデルを使用して、より広範な公開可能なハードウェアと連携するアプリケーションを作成することができます。このようにして、AIの経済的な利益は、多くのユーザーとクリエイターの間で分散されます。提案されたモデルはオープンかつ詳細であり、研究者や学術関係者が解釈性と安全性の面で閉じたモデルの制約を超えることができます。
  3. 支援的:これらのモデルは、顧客を置き換えるためではなく、顧客を支援するために作られています。チームは、超人的な知性を追求するのではなく、AIの特定のタスクを実行する能力を現実世界の文脈で向上させることに焦点を当てています。彼らは、一般の人々や企業がイノベーションを促進し、生産性を向上させ、経済の可能性を拡大するために、AIの潜在能力を活用するためのリソースを構築しています。

チームは、ユーザーが受け取る応答の品質が異なる場合があり、不快な言葉や意見が含まれる場合があることを強調しています。これは、微調整や強化学習を行っていない事前学習された大規模言語モデルの場合に共通するものです。スケール、増加するデータ、コミュニティのフィードバック、最適化などが大幅な改善につながる要素です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「AIとMLが高い需要になる10の理由」 1. ビッグデータの増加による需要の増加:ビッグデータの処理と分析にはAIとMLが必要です 2. 自動化の需要の増加:AIとMLは、自動化されたプロセスとタスクの実行に不可欠です 3. 予測能力の向上:AIとMLは、予測分析において非常に効果的です 4. パーソナライズされたエクスペリエンスの需要:AIとMLは、ユーザーの行動と嗜好を理解し、パーソナライズされたエクスペリエンスを提供するのに役立ちます 5. 自動運転技術の需要の増加:自動運転技術の発展にはAIとMLが不可欠です 6. セキュリティの需要の増加:AIとMLは、セキュリティ分野で新たな挑戦に対処するために使用されます 7. ヘルスケアの需要の増加:AIとMLは、病気の早期検出や治療計画の最適化など、医療分野で重要な役割を果たします 8. クラウドコンピューティングの需要の増加:AIとMLは、クラウドコンピューティングのパフォーマンスと効率を向上させるのに役立ちます 9. ロボティクスの需要の増加:AIとMLは、ロボットの自律性と学習能力を高めるのに使用されます 10. インターネットオブシングス(IoT)の需要の増加:AIとMLは、IoTデバイスのデータ分析と制御に重要な役割を果たします

「2024年におけるAIとMLの需要急増を促している10の主要な要因を発見し、さまざまな産業で探求しましょう技術の未来を探索し...

AIニュース

Windows 12はAIの魔法機能を搭載:テクノロジーの未来への一端

Microsoft(マイクロソフト)は、次世代のWindows OSの大規模なアップデート「ハドソンバレー」と呼ばれるものを熱心に開発し...

データサイエンス

モデルの解釈のマスタリング:パーシャル依存プロットの包括的な解説

モデルの解釈方法を知っていることは、それが奇妙なことをしていないかを理解するために不可欠ですモデルをよりよく知ってい...

人工知能

AIが開発者の生活を簡単にする10の方法

AIは、テストやバグ修正などの繰り返しのタスクを自動化し、開発者がより創造的で戦略的な作業に集中することができるように...

人工知能

ソロプレナーズ向けの11の最高のAIツール(究極のAIツールキット)

これらは、独自で自分の百万ドルの帝国を築くために、独立起業家が使用している最高のAIツールです

データサイエンス

ファインチューニングLLM パラメータ効率の改善 (PEFT) — LoRA および QLoRA — パート1

このブログでは、パラメータ効率的微調整(PEFT)のアイデアを理解し、PEFTの2つの最も重要な手法であるLoRAとQLoRAを探求します