「Pythonによる多クラスラベルのための完全に説明されたソフトマックス回帰」

「分かりやすく解説されたPythonによる多クラスラベルのためのソフトマックス回帰」

機械学習における教師ありマルチクラス分類

James Harrison氏による写真、引用元:Unsplash

はじめに

ロジスティック回帰では、出力カラムには2つのクラス(バイナリクラス)を扱います。しかし、実際の世界では、さまざまなタイプのデータが得られ、出力カラムには2つ以上のクラスがあることがあります。その場合、ソフトマックス回帰(多項ロジスティック回帰またはマルチクラス分類アルゴリズム)を使用することができます。ロジスティック回帰は、ソフトマックス回帰の一形式と言えます。

一部の学習者は、分類問題を行っていると考えるかもしれませんが、アルゴリズム名には回帰という言葉が使われています。ロジスティックベースの計算は線形のみであるため、研究者は単に分類のために線形出力に関数を追加しました。

ソフトマックス関数は、出力のすべてのクラスに対する確率分布を作成します。たとえば、出力カラムに4つのクラスがある場合、これらのクラスの確率は[0.23、0.45、0.12、0.20]となる可能性があります。つまり、入力に基づいて予測されるクラスは最も高い確率を持つクラスとなります。

データをまず見て、確認し、入力やターゲットのカラムまたはフィーチャを見つけることは非常に重要です。次に、出力カラムがある場合は回帰または分類、出力カラムが利用できない場合はクラスタリングアプローチになります。

これらすべてを観察した後、次のステップはデータのフィーチャを完全に理解することです。フィーチャについて読み、研究者はフィーチャエンジニアリング変換に役立つ重要なフィーチャを簡単に解釈することができます。

カバーされるトピック:

  1. 変換を使用しないソフトマックス回帰モデル
  2. 歪んだ分布カラムに対してログ変換を使用するソフトマックス回帰モデル
  3. フィーチャスケーリングを使用するソフトマックス回帰モデル

次の部分は、データの可視化を行うことです。

Pythonによるソフトマックス回帰の例:

import numpy as np import pandas as pd import seaborn as snsimport matplotlib.pyplot as pltfrom…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「ジャスティン・マクギル、Content at Scaleの創設者兼CEO - インタビューシリーズ」

ジャスティンは2008年以来、起業家、イノベーター、マーケターとして活動しています彼は15年以上にわたりSEOマーケティングを...

データサイエンス

2023年にAmazonのデータサイエンティストになる方法は?

ほとんどのビジネスは現在、膨大な量のデータを生成し、編集し、管理しています。しかし、ほとんどのビジネスは、収集したデ...

人工知能

「マーシャンの共同創設者であるイータン・ギンスバーグについてのインタビューシリーズ」

エタン・ギンズバーグは、マーシャンの共同創業者であり、すべてのプロンプトを最適なLLMに動的にルーティングするプラットフ...

人工知能

エンテラソリューションズの創設者兼CEO、スティーブン・デアンジェリス- インタビューシリーズ

スティーブン・デアンジェリスは、エンタラソリューションズの創設者兼CEOであり、自律的な意思決定科学(ADS®)技術を用いて...

データサイエンス

「David Smith、TheVentureCityの最高データオフィサー- インタビューシリーズ」

デビッド・スミス(別名「デビッド・データ」)は、TheVentureCityのチーフデータオフィサーであり、ソフトウェア駆動型のス...

人工知能

スコット・スティーブンソン、スペルブックの共同創設者兼CEO- インタビューシリーズ

スコット・スティーブンソンは、Spellbookの共同創設者兼CEOであり、OpenAIのGPT-4および他の大規模な言語モデル(LLM)に基...