Sklearnの交差検証の可視化:K-Fold、シャッフル&スプリット、および時系列スプリット

Sklearnの交差検証の可視化

Sklearn K-Fold、Shuffle & Split、およびTime Series Splitのクロスバリデーションのプロセスを可視化し、Pythonを使用して検証結果を表示する

写真:Ryoji Iwata氏撮影、Unsplashより引用

クロスバリデーションとは?

基本的に、クロスバリデーションは学習アルゴリズムを評価するための統計的手法です。分析を実行するために、固定数のフォールド(データのグループ)が設定されます。これらのフォールドは、トレーニングセットとテスト(検証)セットにデータをグループ化し、ラウンドごとに交差します。これにより、各データポイントを検証することができます。

主な目的は、モデルが作成に使用されなかった独立したデータを予測する能力をテストすることです。また、オーバーフィッティングや選択バイアスなどの問題に対処するのにも役立ちます。

この記事のクロスバリデーションの結果の例。画像:著者撮影

この記事では、Scikit Learnライブラリの3つのクロスバリデーションのプロセスを可視化するためにPythonを適用します:

  • K-Foldクロスバリデーション
  • Shuffle & Splitクロスバリデーション
  • Time Series Splitクロスバリデーション

さらに、検証結果もプロットして洞察力のある情報を表現することができます。

さあ、始めましょう

1. K-Foldクロスバリデーション

K-Foldはクロスバリデーションの一般的な方法です。まず、すべてのデータをフォールドに分割します。次に、トレーニングセット(k-1フォールド)から学習モデルを作成し、テストセット(残りのフォールド)を検証に使用します。

通常、K-Foldクロスバリデーションから得られるフォールドはできるだけ均等に分割されます。次に、K-Foldクロスバリデーションのプロセスを見ていきます。

ライブラリのインポートとデータの読み込み

例えば、この記事ではSklearnライブラリからダウンロードできるワインデータセットを使用します。このデータセットは、CC BY 4.0ライセンスの下でのUCI MLワインデータのコピーです。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

ジョナサン・ダムブロット、Cranium AIのCEO兼共同創設者- インタビューシリーズ

ジョナサン・ダムブロットは、Cranium AIのCEO兼共同創業者ですCranium AIは、サイバーセキュリティおよびデータサイエンスチ...

人工知能

「ElaiのCEO&共同創業者、Vitalii Romanchenkoについてのインタビューシリーズ」

ヴィタリー・ロマンチェンコは、ElaiのCEO兼共同創設者であり、マイク、カメラ、俳優、スタジオの必要なく、個人が一流のビデ...

人工知能

「サティスファイラボのCEO兼共同創設者、ドニー・ホワイト- インタビューシリーズ」

2016年に設立されたSatisfi Labsは、会話型AI企業のリーディングカンパニーです早期の成功は、ニューヨーク・メッツ、メイシ...

人工知能

ジョシュ・フィースト、CogitoのCEO兼共同創業者 - インタビューシリーズ

ジョシュ・フィーストは、CogitoのCEO兼共同創業者であり、感情と会話AIを組み合わせた革新的なプラットフォームを提供するエ...

人工知能

「Kognitosの創設者兼CEO、ビニー・ギル- インタビューシリーズ」

ビニー・ギルは、複数の役職と企業を横断する多様で幅広い業務経験を持っていますビニーは現在、Kognitosの創設者兼CEOであり...

人工知能

ギル・ジェロン、Orca SecurityのCEO&共同創設者-インタビューシリーズ

ギル・ゲロンは、オルカ・セキュリティのCEO兼共同設立者ですギルは20年以上にわたりサイバーセキュリティ製品をリードし、提...