中国のSJTUの研究者たちは、大規模なLiDARオドメトリ用のウィンドウベースのマスキングされたポイントトランスフォーマーフレームワーク、TransLOを紹介しました

『中国の研究者がSJTUで大規模LiDARオドメトリに適したウィンドウベースのポイントトランスフォーマーフレームワーク「TransLO」を紹介』

上海交通大学と中国矿业大学の研究者たちはTransLOを開発しました。このLiDARオドメトリネットワークは、セルフアテンションとマスクされたクロスフレームアテンションを備えたウィンドウベースのマスクされたポイントトランスフォーマーを統合しています。TransLOは、スパースな点群を効果的に扱うため、無効な動的な点を除外するためにバイナリマスクを使用しています。

この手法では、Iterative Closest Point(ICP)のバリアントや広く使用されているLOAMなど、一般的なLiDARオドメトリの手法について説明しています。また、パフォーマンスの向上のために地面のセグメンテーションを組み込んだLOAMのバリアントに重点を置いています。この研究では、CNNとトランスフォーマーを組み合わせた世界的な特徴埋め込みを実現するため、最初のトランスフォーマーベースのLiDARオドメトリネットワークであるTransLOが紹介されています。射影感知型マスク、ウィンドウベースのマスクされたセルフアテンション(WMSA)、マスクされたクロスフレームアテンション(MCFA)などのコンポーネントは、TransLOの効果を示すアブレーション研究を通じて評価されています。

LiDARオドメトリは、SLAM、ロボットナビゲーション、自動運転などのアプリケーションにおいて重要ですが、従来はICPや特徴ベースの手法に依存していました。CNNなどの学習ベースの手法は、ポイントクラウドにおける長距離の依存関係やグローバル特徴のキャプチャに課題があります。TransLOは、ウィンドウベースのマスクされたポイントトランスフォーマーを使用して、効率的にポイントクラウドを処理し、姿勢推定を予測します。

TransLOは、2D射影、長距離の依存関係をキャプチャするローカルトランスフォーマー、および姿勢推定を予測するMCFAを使用してポイントクラウドを処理します。ストライドベースのサンプリング層とWMSAを使用してポイントクラウドを円柱状の表面に射影します。CNNは受容野を拡大し、射影感知型マスクはポイントクラウドのスパースさに対処します。姿勢ワーピング操作により反復的な改善が行われます。アブレーション研究は、コンポーネントの効果を確認し、TransLOがKITTIオドメトリデータセットで既存の手法を上回ることを示しています。

KITTIオドメトリデータセット上の実験結果は、平均回転RMSEが0.500°/100m、平行移動RMSEが0.993%というTransLOの優れたパフォーマンスを示しています。TransLOは最近の学習ベースの手法を上回り、ほとんどの評価シーケンスでLOAMをも凌駕します。アブレーション研究では、外れ値をフィルタリングするバイナリマスク、フレーム間のソフトな対応関係の確立により、MCFAモジュールが翻訳と回転エラーの改善に貢献していることが強調されています。

提案されたTransLOネットワークは、LiDARオドメトリのためのエンドツーエンドのウィンドウベースのマスクされたポイントトランスフォーマーであり、CNNとトランスフォーマーを統合してグローバル特徴埋め込みと外れ値除去を強化し、KITTIオドメトリデータセット上で最新のパフォーマンスを達成します。主要なコンポーネントには、長距離の依存関係のためのWMSA、外れ値フィルタリングのためのバイナリマスク、フレームの関連付けと姿勢推定におけるMCFAが含まれています。アブレーション研究は、WMSAの重要性、外れ値フィルタリングのためのバイナリマスク、MCFAのモデルの成功における重要な役割を確認しています。TransLOは、大規模な位置特定とナビゲーションにおいて優れた精度、効率、グローバル特徴に焦点を当てています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「プラネットデータとAmazon SageMakerの地理空間能力を活用して、クロップセグメンテーションの機械学習モデルを構築する」

この分析では、K最近傍法(KNN)モデルを使用して、作物セグメンテーションを実施し、農業地域における地上の真相画像とこれ...

AI研究

イェール大学とGoogle DeepMindの研究者は、大規模な言語モデルに対する高度な微調整技術を使用して数学の問題解決の成功を解き明かしました

“`html 最も先進的な大型言語モデル(LLMs)であるGPT-4やPaLM 2でも、数学の問題を解くのは困難です。なぜなら、それ...

AI研究

スタンフォード大学の研究者がSequenceMatchを紹介:模倣学習損失を用いたLLMsのトレーニング

自己回帰モデルは、変数の現在の値が過去の値に大きく依存するという直感に基づいた統計モデルの一種です。つまり、モデルは...

データサイエンス

「CassIO OpenAIに触発されたジェネラティブAIのための最高のライブラリ」

ChatGPTは直感的で使いやすいライブラリを備えているため、開発者のエクスペリエンスを変革しましたそのため、あなたの開発ニ...

AI研究

「サリー大学の研究者が開発した新しいソフトウェアは、AIが実際にどれだけの情報を知っているかを検証することができます」

ここ数年、人工知能(AI)のドメインでいくつかの技術的なブレークスルーがあり、いくつかの産業やセクターに深い影響を与え...

AI研究

「MITの学者たちは、生成型AIの社会的な影響を探るためのシードグラントを授与されました」

「MITの全学派を代表する27人のファイナリストは、技術の民主主義、教育、持続可能性、コミュニケーションなどへの影響を探求...