「dbtモデルのユニットテストを実装するためのシンプル(かつ効果的な)アプローチ」

Simple (and effective) approach for implementing unit tests for dbt models.

dbtモデルのユニットテストは、dbtエコシステムの最も重要な欠落部分の1つでした。この記事では、標準とdbtのベストプラクティスに依存する新しいユニットテストのアプローチを提案しています。

Fabio Ballasina氏の写真(Unsplashより)

dbtがソフトウェアエンジニアリングのベストプラクティスをデータエンジニアリングの領域に導入して以来、その機能とその周辺のエコシステムは、データ変換のさらなる領域をカバーするために拡大し続けています。

しかし、「ソフトウェアエンジニアリングのベストプラクティスを用いたデータエンジニアリング」のパズルの中で、重要な一部であるユニットテストは未解決の問題のままです。

ユニットテストの重要性、それが「本番用に準備ができた」と呼ばれる前のコードのすべての行に対してなぜ重要であり、dbtのテストやデータ品質テストとは異なるのかについては、すでに見事に取り組まれて説明されています。しかし、1分間のエレベーターピッチでその重要性を要約するなら、次のようになります:

データエンジニアリングでは、一般的に2つの異なる要素をテストしたいと考えています:データとコードです。dbtのテスト(および他のデータ品質システム/ツール)はデータをテストすることを可能にし、ユニットテストはコードをテストすることを可能にします。

上記を考慮すると、コミュニティによるdbtのオープンソースのユニットテスト機能の向上(Equal Expertsのdbt Unit TestingパッケージやGoDataDrivenのdbtに特化したPytestプラグインなど)の試みが複数ありました。しかし、これらのパッケージは機能が制限されており、学習曲線が急です。

この記事では、よりシンプルでエレガントな異なるアプローチを紹介し、スケーラブルで信頼性のあるユニットテストプロセスを実装するために標準とdbtのベストプラクティスに依存しています。

モデルのユニットテスト vs. CTEs

アプローチに入る前に、ユニットテストを実行するレベルを定義しましょう。答えるべき質問は…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「コマンドバーの創設者兼CEO、ジェームズ・エバンスによるインタビューシリーズ」

ジェームズ・エバンズは、CommandBarの創設者兼CEOであり、製品、マーケティング、顧客チームを支援するために設計されたAIパ...

人工知能

「トリントの創設者兼CEO、ジェフ・コフマンへのインタビューシリーズ」

ジェフ・コーフマンは、ABC、CBS、CBCニュースで30年のキャリアを持った後、Trintの創設者兼CEOとなりましたジェフは手作業の...

データサイエンス

「David Smith、TheVentureCityの最高データオフィサー- インタビューシリーズ」

デビッド・スミス(別名「デビッド・データ」)は、TheVentureCityのチーフデータオフィサーであり、ソフトウェア駆動型のス...

人工知能

「シフトのCEOであるクリス・ナーゲル – インタビューシリーズ」

クリスはSiftの最高経営責任者です彼は、Ping Identityを含むベンチャー支援および公開SaaS企業のシニアリーダーシップポジシ...

機械学習

「Prolificの機械学習エンジニア兼AIコンサルタント、ノラ・ペトロヴァ – インタビューシリーズ」

『Nora Petrovaは、Prolificの機械学習エンジニア兼AIコンサルタントですProlificは2014年に設立され、既にGoogle、スタンフ...

機械学習

もし芸術が私たちの人間性を表現する方法であるなら、人工知能はどこに適合するのでしょうか?

MITのポストドクターであるジヴ・エプスタイン氏(SM '19、PhD '23)は、芸術やその他のメディアを作成するために生成的AIを...