「Scikit-Learnによるアンサンブル学習:フレンドリーな紹介」

Scikit-Learnのアンサンブル学習のフレンドリーな紹介

XGBoostやランダムフォレストなどのアンサンブル学習アルゴリズムは、Kaggleのコンペティションでトップのパフォーマンスを示しています。それらはどのように機能するのでしょうか?

Source: unsplash.com

ロジスティック回帰や線形回帰などの基本的な学習アルゴリズムは、機械学習の問題に適切な結果を得るにはあまりにも単純すぎます。ニューラルネットワークを使用するという解決策もありますが、それにはほとんど利用できないほどの大量のトレーニングデータが必要です。アンサンブル学習技術を使用すると、限られた量のデータでも単純なモデルのパフォーマンスを向上させることができます。

大きな瓶の中にいくつのジェリービーンズが入っているかを人に推測してもらうと想像してください。一人の人の回答は正確な推定値とは限りません。代わりに、同じ質問を千人にすると、平均的な回答は実際の数値に近いものになるでしょう。これを「群衆の知恵」と呼びます[1]。複雑な推定課題に取り組む際には、群衆は個人よりもはるかに正確な場合があります。

アンサンブル学習アルゴリズムは、回帰器や分類器などのモデルの予測を集約することで、この単純な原理を利用します。分類器の集約では、アンサンブルモデルは低レベル分類器の予測の中で最も一般的なクラスを選ぶことができます。代わりに、回帰タスクでは予測の平均値や中央値を使用することができます。

Image by the author.

多数の弱い学習者、つまりランダムな推測よりもわずかに優れた分類器や回帰器を集約することで、信じられない結果を得ることができます。2値分類のタスクを考えてみましょう。個々の精度が51%である1000の独立した分類器を集約することにより、精度が75%のアンサンブルを作成することができます[2]。

これがなぜアンサンブルアルゴリズムが多くの機械学習コンペティションで勝利する理由です!

アンサンブル学習アルゴリズムを構築するためのいくつかの技術が存在します。主なものはバギング、ブースティング、スタッキングです。以下に続きます…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

AIは精神疾患の検出に優れています

重症患者のせん妄検知は、患者のケアや回復に重要な影響を与える複雑なタスクです。しかし、人工知能(AI)と迅速な反応型脳...

データサイエンス

「IoTエッジデバイスのためのクラウドベースのAI/MLサービスの探索」

AIとMLは、自動運転車、ウェブ検索、音声認識などの進歩を可能にしましたIoTデバイスのAIとMLの探求に興味がある場合、お手伝...

機械学習

AIエージェント:月のジェネレーティブAIトレンド

わずか30分で、実世界の知識を持つLLMを使用して、ノーコードAIエージェントアプリケーションを構築する方法を学びます

データサイエンス

JAXの始め方

JAXは、Googleが開発したPythonライブラリであり、あらゆるタイプのデバイス(CPU、GPU、TPUなど)で高性能な数値計算を行う...

機械学習

「LoRAアダプターにダイブ」

「大規模言語モデル(LLM)は世界中で大流行しています過去の1年間では、彼らができることにおいて莫大な進歩を目撃してきま...

AIニュース

スタビリティAIのスタブルディフュージョンXL 1.0:AI画像生成の画期的なブレークスルー

先進的なAIスタートアップであるStability AIは、Stable Diffusion XL 1.0のローンチにより、再び生成型AIモデルの限界に挑戦...