「Scikit-Learnによるアンサンブル学習:フレンドリーな紹介」

Scikit-Learnのアンサンブル学習のフレンドリーな紹介

XGBoostやランダムフォレストなどのアンサンブル学習アルゴリズムは、Kaggleのコンペティションでトップのパフォーマンスを示しています。それらはどのように機能するのでしょうか?

Source: unsplash.com

ロジスティック回帰や線形回帰などの基本的な学習アルゴリズムは、機械学習の問題に適切な結果を得るにはあまりにも単純すぎます。ニューラルネットワークを使用するという解決策もありますが、それにはほとんど利用できないほどの大量のトレーニングデータが必要です。アンサンブル学習技術を使用すると、限られた量のデータでも単純なモデルのパフォーマンスを向上させることができます。

大きな瓶の中にいくつのジェリービーンズが入っているかを人に推測してもらうと想像してください。一人の人の回答は正確な推定値とは限りません。代わりに、同じ質問を千人にすると、平均的な回答は実際の数値に近いものになるでしょう。これを「群衆の知恵」と呼びます[1]。複雑な推定課題に取り組む際には、群衆は個人よりもはるかに正確な場合があります。

アンサンブル学習アルゴリズムは、回帰器や分類器などのモデルの予測を集約することで、この単純な原理を利用します。分類器の集約では、アンサンブルモデルは低レベル分類器の予測の中で最も一般的なクラスを選ぶことができます。代わりに、回帰タスクでは予測の平均値や中央値を使用することができます。

Image by the author.

多数の弱い学習者、つまりランダムな推測よりもわずかに優れた分類器や回帰器を集約することで、信じられない結果を得ることができます。2値分類のタスクを考えてみましょう。個々の精度が51%である1000の独立した分類器を集約することにより、精度が75%のアンサンブルを作成することができます[2]。

これがなぜアンサンブルアルゴリズムが多くの機械学習コンペティションで勝利する理由です!

アンサンブル学習アルゴリズムを構築するためのいくつかの技術が存在します。主なものはバギング、ブースティング、スタッキングです。以下に続きます…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

エッジMLのタイプとエンタープライズのユースケース

エッジマシンラーニングにより、デバイスはAIのタスクをローカルで実行することができ、結果的に待ち時間が短縮され、データ...

データサイエンス

倉庫業務の変革:AIと自動化の力を活用する

グローバルな供給チェーンの進化に伴い、顧客の要求に応える倉庫の役割がますます重要になってきています

人工知能

「Azureプロジェクト管理のナビゲーション:効率的な運用と展開についての深い探求」

「エキスパートのストラテジーを使用して、シームレスな操作と成功した展開に必要なキーワードを明らかにし、Microsoft Azure...

機械学習

「ChatGPT AI-1の解放:高度なLLMベースのシステムの構築」

導入 この記事では、チャットGPT AI-1を使ったLLM(大規模言語モデル)に基づくシステムの構築について説明します。読者がプ...

AI研究

「Microsoftの研究者がPIT(Permutation Invariant Transformation)を提案:動的まばらさのためのディープラーニングコンパイラ」

“`html 最近、深層学習は動的スパース性に最適化されたモデルの研究によって注目されています。このシナリオでは、スパ...

機械学習

PyTorchを使った効率的な画像セグメンテーション:Part 2

これは、PyTorchを使用してディープラーニング技術を使ってゼロから画像セグメンテーションをステップバイステップで実装する...