「時間の逆転:拡散モデルと確率微分方程式」

「美容とファッションの時空転送:拡散モデルと確率微分方程式」

はじまりは混沌でした…

AI 生成の画像、Freepik

拡散モデルにより、私たちは時間を逆転することができます。ええ、時間です。しかし、私は自分自身に先走っています… 前の2つの記事では、異なる拡散プロセスの2つの定式化、ディノイジング確率的拡散モデル(DDPMs)ランジュバンダイナミクスによるスコアマッチング(SMLDs)について説明しました。この記事では、これらの2つの定式化を統一し、確率微分方程式(SDEs)を使用して拡散プロセスとその逆転をどのように記述できるかを探求します。

では、時間をさかのぼる旅を始めましょう!

数学的な背景

拡散モデルに飛び込む前に、確率微分方程式の主要な概念に馴染んでみましょう。

決定論的微分方程式

おそらく既にご存知のように、微分方程式は1つ以上の関数とその導関数の関係を表す方程式です。物理学や数学では、様々なシステムの動的な振る舞いをモデル化するために微分方程式を使用します。

一般的に、微分方程式は以下のような形をしています:

また、この方程式を微小差分で表すこともできます:

直感的には、関数 x = x(t) の値に非常に小さな – 無限小の – 変化は、非常に小さな時間の変化によって f = f(t, x(t)) の倍数だけスケールされることを意味しています。

上記の定式化は決定論的微分方程式を表していることに注意しましょう。これは、同じ初期条件であれば、システムのために一意の解が得られること、つまりランダム要素は存在しないことを意味します。

確率微分方程式

確率論の授業を受けたことがある人ならば、ほとんどの場合、現実世界は決定論的微分方程式を用いて正確に記述するには複雑すぎることを知っています。これらの場合、確率論の概念(例:確率過程)を使用して、現実世界の現象をモデル化しようとします。

このような複雑なシステムの典型的な例は、ブラウニアン運動、つまり物体の運動です…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「UVeyeの共同設立者兼CEO、アミール・ヘヴェルについてのインタビューシリーズ」

アミール・ヘヴァーは、UVeyeのCEO兼共同創設者であり、高速かつ正確な異常検出により、自動車およびセキュリティ産業に直面...

人工知能

ディープAIの共同創業者兼CEO、ケビン・バラゴナ氏- インタビューシリーズ

ディープAIの創設者であるケビン・バラゴナは、10年以上の経験を持つプロのソフトウェアエンジニア兼製品開発者です彼の目標...

人工知能

アーティスの創設者兼CEO、ウィリアム・ウーによるインタビューシリーズ

ウィリアム・ウーは、Artisseの創設者兼CEOであり、ユーザーの好みに基づいて写真を精密に変更する技術を提供していますそれ...

人工知能

「パクストンAIの共同創業者兼CEO、タングイ・シャウ - インタビューシリーズ」

タングイ・ショウは、Paxton AIの共同創設者兼CEOであり、法的研究と起草の負担を軽減するためにGenerative AIを使用するプラ...

人工知能

「ゲイリー・ヒュースティス、パワーハウスフォレンジクスのオーナー兼ディレクター- インタビューシリーズ」

ゲイリー・ヒュースティス氏は、パワーハウスフォレンジックスのオーナー兼ディレクターであり、ライセンスを持つ私立探偵、...

人工知能

「ナレ・ヴァンダニャン、Ntropyの共同創設者兼CEO- インタビューシリーズ」

Ntropyの共同創設者兼CEOであるナレ・ヴァンダニアンは、開発者が100ミリ秒未満で超人的な精度で金融取引を解析することを可...