ISTAオーストリアとニューラルマジックの研究者が、トリリオンパラメータの言語モデルの効率的な実行のための革命的な圧縮フレームワークであるQMoEを紹介

ISTAオーストリアとニューラルマジックの研究者が、トリリオンパラメータの言語モデルの効率的な実行のための革命的な圧縮フレームワークQMoEを紹介

複数の専門サブネットワークの出力を組み合わせて予測や意思決定を行うために設計されたニューラルネットワークモデルは、エキスパートの混合(MoE)と呼ばれます。このアーキテクチャは、複雑で多様なデータを取り扱う際に特に有用であり、データの異なるサブセットや側面に対して特殊なモデルを効果的に処理する必要がある場合に適しています。MoEモデルは、特定の入力に対してパフォーマンスが低いエキスパートの出力を無視することを学ぶことができるため、データ中の外れ値やノイズに対してより堅牢です。

MoEアーキテクチャの計算コストは、モデルの具体的な設計、対応するタスクの複雑さ、トレーニングや推論に使用されるハードウェアによって大きく異なる場合があります。特に多くのエキスパートや複雑なゲーティングメカニズムが関与する場合、MoEアーキテクチャは従来のニューラルネットワークよりも計算コストが高くなる場合があります。たとえば、SwitchTransformer-c2048モデルは1.6兆個のパラメータを持ち、効率的に実行するには3.2 TBのアクセラレータメモリが必要です。これは困難で高価なものとなっています。

研究者は、QMoEと呼ばれる新しいフレームワークにおいて、このメモリ問題の解決策を提案しています。QMoEは、1ビット未満のパラメータごとに1.6兆個のパラメータを圧縮する正確なスケーラブルなアルゴリズムから構成されています。これにより、160 GB以下にSwitchTransformer-c2048モデルの1.6兆個のパラメータを圧縮することができ、単一のGPUで1日以内に処理することができます。これは、1ビット未満のパラメータによる正確な圧縮が実現可能であり、手頃な再トレーニング不要の圧縮技術によって達成される初めての事例です。

これは通常、特定のモデルコンポーネントのコピーを作成し、各コンポーネントがすべての入力トークンのサブセットのみを処理するようにすることで実現されます。ルータレイヤーは一般的に、対応する入力-コンポーネント割り当てを決定します。量子化は、モデルサイズやその対応するモデル重みを低い数値精度にするために現在使用されている方法です。ただし、一部のMoEは非常に大きいため、4倍以上の削減率が必要になる場合があります。極端に低い精度でモデルを量子化するには、より洗練されたデータ依存の方法が必要です。

完全精度(32ビットまたは16ビット)の重みとアクティベーションを持つニューラルネットワークをトレーニングする代わりに、データ依存の量子化手法は、量子化された重みとアクティベーションでモデルをトレーニングします。これにより、モデルは低精度数値表現の制限に適応することを学ぶことができます。データ依存の量子化のための人気のあるフレームワークやツールには、TensorFlow、PyTorch、TensorRTなどがあり、量子化に対するサポートを組み込んでいます。

研究者は、デコーディング操作とエンコード行列に対して合理的な効率を持つことを考慮しています。彼らの今後の研究では、事前に訓練されたベースモデルの直接圧縮に焦点を当てる予定です。そして将来的には、圧縮モデルを特定の下流タスクに向けて調整するフィネチューニングも行う予定です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

コンピュータサイエンス

ハーバード大学の新しいコンピューターサイエンスの先生は、チャットボットです

大学の主力コンピュータサイエンスの授業であるCS50に登録している学生は、9月にAI教師が提示されます

機械学習

「画像の補完の進展:この新しいAI補完による2Dと3Dの操作のギャップを埋めるニューラル放射場」

コンテンツ作成において、画像の操作には持続的な関心があります。最も広く研究されている操作の1つは、オブジェクトの削除と...

機械学習

メタのボイスボックス:すべての言語を話すAI

Facebookの親会社であるMetaは画期的な開発を発表し、最新の生成型人工知能(AI)であるVoiceboxを公開しました。従来のテキ...

AIニュース

あなたの次の夢の役割(2023年)を見つけるのに役立つ、最高のAIツール15選

Resumaker.ai Resumaker.aiは、数分で履歴書を作成するのを支援するウェブサイトです。ポータルは、いくつかのカスタマイズ可...

人工知能

10 ChatGPT プロジェクト チートシート

VoAGI' 最新のチートシートでは、ML、NLP、およびフルスタック開発を含むデータサイエンスのワークフローを強化するための10...

AI研究

アップルの研究者が提案する「大規模な言語モデル強化学習ポリシー(LLaRP)」:体現された視覚的課題のために汎用的なポリシーとして機能するLLMをカスタマイズするためのAIアプローチ

自然言語処理、理解、生成は、大規模言語モデル(LLM)の導入により新たな段階に入りました。GPT-3などのモデルは、膨大な量...