エイントホーフェンとノースウェスタン大学の研究者が、外部のトレーニングを必要としないオンチップ学習が可能な新しいニューロモーフィックバイオセンサーを開発しました

Researchers from Eindhoven and Northwestern University have developed a new neuromorphic biosensor capable of on-chip learning without the need for external training.

ニューロモーフィックコンピューティングは、人間の脳の構造と機能に触発されています。ニューロモーフィックチップは、物理的な人工ニューロンを使用して計算を行うデバイスです。従来のデジタルプロセッサとは異なり、これらのチップは生物学的にインスパイアされたエネルギー効率の良い方法で人工知能(AI)および機械学習(ML)の活動を行うように設計されています。しかし、ニューロモーフィックコンピュータを外部のトレーニングソフトウェアを使用してトレーニングする必要性により、広範な使用が改善される可能性がありますが、時間がかかりエネルギー効率が低下します。

この問題に取り組むために、オランダのアイントホーフェン工科大学とアメリカのノースウェスタン大学の研究者らは、外部のトレーニングを必要としない、チップ上で学習できるニューロモーフィックバイオセンサーを開発しました。

彼らが使用したスマートバイオセンサーは、人間の脳でのニューロン間のコミュニケーションの仕方に似た構造を持つニューロモーフィックバイオセンシングコンピュータです。

研究者は、スマートバイオセンサーが、コンピュータやソフトウェアを使用せずにシスティック線維症のような疾患を検出することができると述べました。さらに、ニューロモーフィックコンピューティングは、特に病気や状態をチェックするための診療所での使用に大きな影響を与える可能性があると指摘しました。

研究者は、新しいチップの効果をシスティック線維症(肺や消化器系などの臓器に損傷を与える遺伝性の状態)に対してテストしました。システィック線維症は、塩化アニオンの高い量が状態を示すという発汗試験で検出することができます。

研究者は、実装の容易さのために実際の患者データを使用しなかったと述べました。ただし、彼らは健康なドナーからの発汗サンプルを使用しました。彼らは陰性または健康な一つのドナーの発汗サンプルを使用し、塩化アニオンの非常に高い量を含む第二のサンプルを準備しました。研究者は、さまざまな既知のイオン濃度を持つ複数の発汗サンプルを調査し、それらのサンプルをチップ上でテストしました。テストの結果が誤っていた場合、彼らはチップを修正しました。

バイオセンサーは、センサーモジュール、ハードウェアニューラルネットワーク、および出力分類部の3つの主要なパーツから構成されています。モジュール式のバイオセンサーは、ハードウェアニューラルネットワークのシナプスの重みと出力分類層を形成する有機ニューロモーフィックデバイスの統合アレイです。イオン選択電極は、発汗の一滴がセンサーモジュールに適用された後、塩化物および他のイオンの量を測定します。ニューロモーフィックチップはこれらのインパルスを処理し、分析結果は、成功または失敗の結果を示す緑色または赤色の光として表示されます。

このチップ上での学習手法により、エンドユーザーが自分のデータを使用して直接トレーニングできる個別化可能な埋め込み型ニューラルネットワークの可能性が実現されます。このような方法は、人々に大きな影響を与える可能性を秘めています。最終的には、チップを実時間で義肢などのデバイスを操作するようにトレーニングすることができるかもしれません。従来の方法とは異なり、これらのチップは仕事と環境に学習し適応する能力があり、事前プログラミングの必要性を排除しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「AIリスクの実践的なナビゲーション」

「過去数年間の多くの刺激的なAI革新の裏側には、さまざまな既知および新興のリスクが存在します:アルゴリズム的な偏り、プ...

機械学習

機械学習(ML)の実験トラッキングと管理のためのトップツール(2023年)

機械学習プロジェクトを行う際に、単一のモデルトレーニング実行から良い結果を得ることは一つのことです。機械学習の試行を...

機械学習

「ChatGPTは私たちを出し抜いているのか? チューリングテストの視点からの探求」

「機械は思考することができるのか?この記事は、チャットGPTの性能をチューリングテストが設定した厳しい基準に基づいて調査...

機械学習

「自分の武器を選ぶ:うつ病AIコンサルタントの生存戦略」

最新のターミネーターの映画が最近公開されましたこの新しいエピソードでは、未来の人間の抵抗組織がロボットを過去に送り、O...

AI研究

「このAppleのAI研究は、ジェンダーステレオタイプに関するLLMsの振る舞いの既知の問題を調査します」

大規模言語モデル(LLM)は、ここ数ヶ月で非常に進歩し、さまざまな分野で最先端のベンチマークを押し上げてきました。大規模...

人工知能

自律型AIエージェントについて知る必要性

自律型AIエージェントとその重要性を理解するための初心者向けガイド