横浜の大学の研究者らが提案した「VirSen1.0:センサーに基づく人間のジェスチャー認識システムの開発を効率化するための仮想環境」

Researchers from a university in Yokohama proposed VirSen1.0 a virtual environment to streamline the development of sensor-based human gesture recognition systems.

ジェスチャー認識技術は、センサーの配置と配置、データの解釈、および機械学習の精度において重大な課題に直面しています。微妙な動きをキャプチャするためのセンサーの効率的な設定、結果のデータの信頼性のある解釈、および意図したジェスチャーを正確に認識するための機械学習アルゴリズムの確実な認識は、持続的な問題となっています。これらの問題は、最適なパフォーマンスを妨げるだけでなく、さまざまなアプリケーションでジェスチャーベースのシステムの広範な採用を制限しています。

横浜の大学の研究者チームは、コンピュータ化された人間のジェスチャー認識のための新しいモデルを発表しました。この研究では、仮想的な光学センサーを仮想空間に対話的に配置してジェスチャー推定システムを設計するためのユーザーインターフェース(UI)であるVirSen 1.0の開発について説明しています。これにより、物理的なセンサーの必要性を排除して、ユーザーはセンサーの配置を実験し、ジェスチャー認識に与える影響を評価することができます。

データは、アバターが所望のジェスチャーを行うことによってトレーニングのために収集されます。研究者たちは、センサー管理のシミュレータに関連する作業について議論し、シミュレータ、データ取得、およびモデル作成を組み合わせたアプローチのユニークさを強調しています。大量のトレーニングデータを収集することが実用的ではないため、サポートベクターマシン(SVM)分類器は、放射基底関数カーネルを使用しています。この研究では、順列特徴重要度(PFI)の貢献指標が高い認識率をもたらすセンサー配置の特定において重要性を強調しています。PFIは、個々の特徴がモデルの予測にどのように影響を与えるかを並べ替えることで測定します。PFIは特徴に関する洞察を提供し、試行錯誤のプロセス中にセンサーの配置を最適化するのに役立ちます。

この研究の光学センサーは、赤外線LEDとフォトディテクタトランジスタで構成されています。データの取得は、センサー値が前のフレームと比較して特定の閾値を超えたときに開始されます。人間のジェスチャーは、イナーシャルセンサをキャプチャするモーションキャプチャツールであるXsensを使用して記録されます。スイーティング、ジャンプ、リーニング、および手を上げるなど、6つの3Dジェスチャーが記録されています。実装には、シミュレータのインターフェースの視覚的な表現が含まれており、ユーザーはオブジェクトを配置し、データを収集し、センサーの値を視覚化し、PFIの貢献指標で精度を評価することができます。

研究チームは、シミュレータを改良する計画であり、過去の配置と結果を確認するための追加機能、PFIの貢献指標に基づいたセンサーの配置を提案する機能を含める予定です。将来の課題として、衣類が認識精度に与える影響を考慮していないこと、センサーノイズとエラーモデリングの欠如、処理速度、および認識対象の制限など、特定の制約を解消する予定です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

ユリーカに会ってください:大規模な言語モデルでパワードされた人間レベルの報酬設計アルゴリズム

大型言語モデル(LLM)は、高レベルの計画に優れていますが、ペン回しのような低レベルのタスクに対するサポートが必要です。...

AI研究

「ハギングフェイスの研究者たちは、Distil-Whisperを紹介しました:高性能でリソースが限られた環境におけるギャップを埋めるコンパクトな音声認識モデル」

ハギングフェイスの研究者たちは、リソース制約のある環境での大規模な事前学習済音声認識モデルの展開の問題に取り組んでき...

AI研究

ワシントン大学とAI2の研究者が、VQAを介してAIが生成した画像の忠実度を測定する自動評価指標であるTIFAを紹介します

テキストから画像を生成するモデルは、人工知能の進歩の最も良い例の一つです。研究者たちの持続的な進歩と努力により、これ...

人工知能

AgentGPT ブラウザ内の自律型AIエージェント

あなたのAIエージェントに名前と目標を与え、割り当てられた目的を達成するのを見てください

AI研究

マイクロソフトリサーチがBatteryMLを紹介:バッテリー劣化における機械学習のためのオープンソースツール

リチウムイオン電池は、高いエネルギー密度、長いサイクル寿命、低い自己放電率のおかげで、現代のエネルギー蓄積の要となっ...

データサイエンス

「データ統合の未来のトレンド」

クラウドソリューションやリアルタイム分析から機械学習まで、データ統合の将来を探求するこの進化する風景で、適応性が鍵となる