XLang NLP研究所の研究者がLemurを提案:テキストとコードの能力をバランスさせた最先端のオープンプリトレーニング済み大規模言語モデル

Researchers at XLang NLP Institute propose Lemur.

言語とテクノロジーの交差点によってますます推進される世界において、多目的かつ強力な言語モデルの需要はかつてなく高まっています。従来の大規模言語モデル(LLM)は、テキストの理解やコーディングのタスクに優れていましたが、両者の間に調和の取れたバランスを築くことはめったにありませんでした。この不均衡は、テキストの推論やコーディングの能力をシームレスにナビゲートできるモデルの市場においてギャップを残しました。そこで、このギャップを埋めることを目指す、オープンな事前学習済みおよび監督されたファインチューニングされたLLMの分野に革新的な貢献をする2つのプロジェクト、LemurとLemur-chatが登場します。

テキストとコードの両方を適切に処理できる言語モデルを作成することは、長年の課題でした。既存のLLMは通常、テキストの理解またはコーディングのタスクに特化していましたが、両方に優れているものはほとんどありませんでした。この特化は、開発者や研究者が一方の領域で優れているモデルと他方では不十分なモデルの選択を迫られることになりました。その結果、理解、推論、計画、コーディング、コンテキストの基礎を含む多面的なスキルセットを提供できるLLMの需要が生じました。

従来のLLMの形でいくつかの解決策が存在しますが、その限界は明白でした。業界には、テキストとコードに関連するタスクの複雑な要求を真にバランスさせることができるモデルが不足していました。これにより、言語モデルエージェントの風景には、理解、推論、コーディングの統合的なアプローチが必要とされる空白が生じました。

XLang LabとSalesforce Researchの共同研究によって率いられるLemurプロジェクトは、この言語モデル技術における重要なギャップを埋めることを目指しています。LemurとLemur-chatは、テキストとコードに関連するタスクの両方に優れた性能を発揮するオープンで事前学習済みで監督されたファインチューニングされたLLMを開発する先駆的な試みを表しています。この取り組みの基盤は、Llama 2の広範な事前学習による、約1000億行のコード集中データのコーパスです。この事前学習フェーズの後には、公開された教育および対話データの約30万のインスタンスでの監督されたファインチューニングが続きます。その結果、テキストの推論と知識のパフォーマンスを競争力を維持しながら、コーディングと基礎づけの能力が向上した言語モデルが得られます。

LemurとLemur-chatの性能指標は、その能力を証明しています。Lemurは、コーディングのベンチマークで他のオープンソース言語モデルを凌駕し、そのコーディング能力を示しています。同時に、テキストの推論と知識ベースのタスクにおいて競争力を維持し、その多目的なスキルセットを示しています。一方、Lemur-chatは、さまざまな次元で他のオープンソースの監督されたファインチューニングモデルを大きく上回る優れた能力を示しており、テキストとコードを結ぶ会話の文脈での優れた能力を示しています。

Lemurプロジェクトは、XLang LabとSalesforce Researchの共同研究によるものであり、Salesforce Research、Google Research、Amazon AWSの寛大な寄付による支援を受けています。バランスの取れたオープンソース言語モデルに向けた旅はまだ途中ですが、Lemurの貢献は既に言語モデル技術の風景を変え始めています。テキストとコードに関連するタスクの両方で優れた性能を発揮するモデルを提供することで、Lemurは、言語とテクノロジーの複雑な交差点を航海しようとする開発者、研究者、組織にとって、強力なツールを提供します。

まとめると、Lemurプロジェクトは、言語モデルの世界における革新の象徴です。テキストとコードに関連するタスクを調和的にバランスさせる能力は、この分野における長年の課題に取り組んできました。Lemurは、さらなる研究を推進し、オープンソース言語モデルのより強力でバランスの取れた基盤を確立することを約束しながら、進化し続けることで、言語モデル技術の未来はこれまで以上に明るく多目的になります。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

テンセントAIラボの研究者たちは、テキスト対応の画像プロンプトアダプタ「IP-Adapter」を開発しました:テキストから画像への拡散モデルのためのアダプタです

「リンゴ」と言えば、あなたの頭にすぐにリンゴのイメージが浮かびます。私たちの脳の働き方が魅力的であるように、生成AIも...

機械学習

「低コスト四足ロボットはパルクールをマスターできるのか? アジャイルなロボット運動のための革命的な学習システムを公開する」

複雑な物理的タスク、例えば困難な環境でのナビゲーションなどをロボットに実行させるという課題は、ロボティクスにおいて長...

機械学習

Webスケールトレーニング解放:DeepMindがOWLv2とOWL-STを紹介、未知語彙物体検出の革新的ツール、前例のない自己学習技術によって駆動されます

オープンボキャブラリーの物体検出は、さまざまな実世界のコンピュータビジョンタスクにおいて重要な要素です。ただし、検出...

AI研究

計算機の進歩により、研究者はより高い信頼性で気候をモデル化することができるようになります

研究者たちは、計算リソースと正確な雲モデリングをバランスさせることによって気候モデリングを進歩させることができるアル...

AI研究

NVIDIAの研究者が「Retro 48B」を導入:前の指示調整よりも前にリトリーバルが行われた最大のLLM Pretrained

NvidiaとIllinois大学の研究者は、「Retro 48B」という以前の検索増強モデル(Retro(7.5Bパラメータ)など)よりも遥かに大...

機械学習

「生成AIの余波におけるオープンソースAIの戦い」

テックジャイアントやAI実践者がリスクと報酬を考慮しながら、オープンソースAIの議論の進化する性質について学びましょう