「UTオースティン大学の研究者が、安定した拡散を用いたAI手法「PSLD」を紹介追加のトレーニングなしにすべての線形問題を解決する」

Researchers at UT Austin introduce AI method 'PSLD' using stable diffusion to solve all linear problems without additional training.

逆問題を解決するためには、2つのアプローチのカテゴリがあります。監督学習の手法では、復元モデルがタスクを完了するために訓練され、非監督学習の手法では、生成モデルが学習した事前知識を利用して復元プロセスを誘導します。

生成モデリングの重要な進歩として、拡散モデルの登場があります。拡散モデルの明白な有効性の結果、研究者は逆問題の解決の可能性を探求し始めました。拡散モデルを使用して(線形および非線形の)逆問題を効率的に解決するために、いくつかの近似アルゴリズムが開発されています。これらの手法では、事前学習済みの拡散モデルをデータ分布の柔軟な事前知識として使用します。

Stable Diffusionなどの最先端の基礎モデルは、Latent Diffusion Models(LDMs)によって駆動されています。これらのモデルは、画像、動画、オーディオ、医療のドメイン分布(MRIおよびタンパク質)など、さまざまなデータモダリティにわたるさまざまなアプリケーションを可能にしました。しかし、現在の逆問題解決アルゴリズムは、Latent Diffusion Modelsとは互換性がありません。逆問題に対しては、各タスクごとにベースモデル(Stable Diffusionなど)を使用するためにファインチューニングを行う必要があります。

テキサス大学オースティン校の研究チームによる最近の研究では、事前学習済みのLatent Diffusion Modelsを使用して一般的な逆問題を解決するための最初のフレームワークを提案しています。追加の勾配更新ステップにより、デコーディング-エンコーディングマップが損失のないサンプルレイテントに向かうように拡散プロセスを誘導します。これはDPSの拡張のための彼らの核心概念です。彼らのアルゴリズムであるPosterior Sampling with Latent Diffusion(PSLD)は、広範な問題に対してアクセス可能な基礎モデルの力を利用して、ファインチューニングなしで従来の手法を上回りました。

研究者たちは、PSLDアプローチを最先端のDPSアルゴリズムと比較して、ランダムインペインティング、ボックスインペインティング、ノイズ除去、ガウシアンデブラー、モーションデブラー、任意のマスキング、およびスーパーレゾリューションなど、さまざまな画像の復元および強化タスクで評価しました。彼らの分析には、LAIONデータセットで訓練されたStable Diffusionが使用されました。結果は最先端のパフォーマンスを示しました。

研究者たちはまた、このデータセットとその基礎モデルの固有のバイアスによってアルゴリズムが無意識に影響を受ける可能性にも気付きました。提案された手法は、どのLDMにも互換性があります。研究チームは、これらの問題が改良されたデータセットで訓練された新しい基礎モデルによって解決されると考えています。また、非線形逆問題の解決に対して潜在ベースの基礎モデルを適用することはまだ調査されていないことを強調しています。アプローチがDPSの近似に基づいているため、これが一般化されることを期待しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

ウェイモのMotionLMを紹介します:最新型のマルチエージェントモーション予測アプローチで、大規模言語モデル(LLM)が自動車の運転をサポートできるようにする可能性のあるものです

オートリグレッション言語モデルは、あらかじめ定義された文法や構文解析の概念を必要とせずに、文章内の次のサブワードを予...

データサイエンス

このAI論文は『プライバシー保護MAE-Alignと呼ばれる新しい事前トレーニング戦略を提案し、合成データと人間除去された実データを効果的に組み合わせる』というものです

アクション認識は、ビデオシーケンスから人間の動作を識別・分類するタスクであり、コンピュータビジョンの中で非常に重要な...

AI研究

「イェール大学とGoogleの研究者が、効率的な長距離シーケンス処理のために大規模言語モデルを迅速に加速する近似Attentionメカニズム、HyperAttentionを紹介する」という文章です

大規模言語モデルの急速な進歩により、チャットボットから機械翻訳までの幅広いアプリケーションが可能になりました。ただし...

データサイエンス

大きな言語モデル:TinyBERT - 自然言語処理のためのBERT蒸留

最近、大規模言語モデルの進化が急速に進んでいますBERTは最も人気のある効率的なモデルの1つとなり、高い精度でさまざまなNL...

人工知能

電車利用者のためのリアルタイム混雑予測

オランダ鉄道を利用する旅行者は、オランダの鉄道機関のアプリを使用して旅程を計画することができます旅程を計画する際、そ...

AIニュース

「AIとの会話の仕方」 翻訳結果は:

ChatGPTのようなチャットボットから驚くべき結果を得るための普通の人のガイド