RepVGG 構造的再パラメータ化の詳細な説明

RepVGGの再パラメータ化の詳細な説明

RepVGGの解明:構造再パラメータ化の秘密を明らかにする

— 既に優れたリソースがいくつか存在するにもかかわらず、なぜRepVGGについてこの記事を書いているのですか?

— 答えは、私が提供しようとしているユニークな視点にあります。

— 他の記事は似たような概念に触れたり、コードの推論速度を紹介したりするかもしれませんが、私は構造的パラメータ化の包括的な理解を提供することに焦点を当てています。

この記事では、これらの1×1畳み込みがどのように3×3畳み込みにさらにパラメータ化され、identityショートカット1×1畳み込みに変換されるかについて詳しく説明します。この記事は、既存の説明にある知識の欠落を埋める詳細な解説を提供することを目的としています。元のVGGアーキテクチャの改変では、残差ブランチと1×1畳み込みブランチを導入しました。これらの追加は、後続の構造再パラメータ化を単一のパスウェイに可能にすることを目的として行われました。この変換を容易にするために、これらのブランチの配置を慎重に調整し、クロスレイヤーの接続を導入しないようにしました。トレーニングで使用されるRepVGGモデルは、大まかに言って3つのパスウェイで構成されています: 通常の畳み込み(conv_3x3)、1×1畳み込み(conv_1x1)、およびidentityパスウェイ。これらの各パスウェイにはバッチ正規化(BN)層が伴っています。次のセクションでは、これらの3つのパスウェイが推論時に統一されたconv_3x3ユニットにマージされる方法について詳しく説明します。

出典:https://arxiv.org/pdf/2101.03697.pdf

conv_1x1とconv_3x3の融合

まず、conv_3x3のプロセスについて確認しましょう:

詳細に説明するために、入力特徴マップのサイズが(1, 2, 3, 3)であると仮定します。これはバッチサイズが1、チャネルが2、特徴の次元が3×3であることを意味します。出力特徴マップのサイズは入力特徴マップのサイズと同じであり、ストライドは…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

ベイリー・カクスマー、ウォータールー大学の博士課程候補 - インタビューシリーズ

カツマー・ベイリーは、ウォータールー大学のコンピュータ科学学部の博士課程の候補者であり、アルバータ大学の新入教員です...

人工知能

ファイデムのチーフ・プロダクト・オフィサー、アルパー・テキン-インタビューシリーズ

アルパー・テキンは、FindemというAI人材の獲得と管理プラットフォームの最高製品責任者(CPO)ですFindemのTalent Data Clou...

人工知能

「LeanTaaSの創設者兼CEO、モハン・ギリダラダスによるインタビューシリーズ」

モーハン・ギリダラダスは、AIを活用したSaaSベースのキャパシティ管理、スタッフ配置、患者フローのソフトウェアを提供する...

機械学習

「Prolificの機械学習エンジニア兼AIコンサルタント、ノラ・ペトロヴァ – インタビューシリーズ」

『Nora Petrovaは、Prolificの機械学習エンジニア兼AIコンサルタントですProlificは2014年に設立され、既にGoogle、スタンフ...

データサイエンス

「2023年にデータサイエンスFAANGの仕事をゲットする方法は?」

データサイエンスは非常に求められる分野となり、FAANG(Facebook、Amazon、Apple、Netflix、Google)企業での就職は大きな成...

人工知能

「パクストンAIの共同創業者兼CEO、タングイ・シャウ - インタビューシリーズ」

タングイ・ショウは、Paxton AIの共同創設者兼CEOであり、法的研究と起草の負担を軽減するためにGenerative AIを使用するプラ...