RepVGG 構造的再パラメータ化の詳細な説明

RepVGGの再パラメータ化の詳細な説明

RepVGGの解明:構造再パラメータ化の秘密を明らかにする

— 既に優れたリソースがいくつか存在するにもかかわらず、なぜRepVGGについてこの記事を書いているのですか?

— 答えは、私が提供しようとしているユニークな視点にあります。

— 他の記事は似たような概念に触れたり、コードの推論速度を紹介したりするかもしれませんが、私は構造的パラメータ化の包括的な理解を提供することに焦点を当てています。

この記事では、これらの1×1畳み込みがどのように3×3畳み込みにさらにパラメータ化され、identityショートカット1×1畳み込みに変換されるかについて詳しく説明します。この記事は、既存の説明にある知識の欠落を埋める詳細な解説を提供することを目的としています。元のVGGアーキテクチャの改変では、残差ブランチと1×1畳み込みブランチを導入しました。これらの追加は、後続の構造再パラメータ化を単一のパスウェイに可能にすることを目的として行われました。この変換を容易にするために、これらのブランチの配置を慎重に調整し、クロスレイヤーの接続を導入しないようにしました。トレーニングで使用されるRepVGGモデルは、大まかに言って3つのパスウェイで構成されています: 通常の畳み込み(conv_3x3)、1×1畳み込み(conv_1x1)、およびidentityパスウェイ。これらの各パスウェイにはバッチ正規化(BN)層が伴っています。次のセクションでは、これらの3つのパスウェイが推論時に統一されたconv_3x3ユニットにマージされる方法について詳しく説明します。

出典:https://arxiv.org/pdf/2101.03697.pdf

conv_1x1とconv_3x3の融合

まず、conv_3x3のプロセスについて確認しましょう:

詳細に説明するために、入力特徴マップのサイズが(1, 2, 3, 3)であると仮定します。これはバッチサイズが1、チャネルが2、特徴の次元が3×3であることを意味します。出力特徴マップのサイズは入力特徴マップのサイズと同じであり、ストライドは…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「UVeyeの共同設立者兼CEO、アミール・ヘヴェルについてのインタビューシリーズ」

アミール・ヘヴァーは、UVeyeのCEO兼共同創設者であり、高速かつ正確な異常検出により、自動車およびセキュリティ産業に直面...

人工知能

ベイリー・カクスマー、ウォータールー大学の博士課程候補 - インタビューシリーズ

カツマー・ベイリーは、ウォータールー大学のコンピュータ科学学部の博士課程の候補者であり、アルバータ大学の新入教員です...

AIニュース

OpenAIのCEOであるSam Altman氏:AIの力が証明されるにつれて、仕事に関するリスクが生じる

OpenAIのCEOであるSam Altmanは、特に彼の作品であるChatGPTに関するAIの潜在的な危険性について公言してきました。最近のイ...

人工知能

ディープAIの共同創業者兼CEO、ケビン・バラゴナ氏- インタビューシリーズ

ディープAIの創設者であるケビン・バラゴナは、10年以上の経験を持つプロのソフトウェアエンジニア兼製品開発者です彼の目標...

人工知能

「サティスファイラボのCEO兼共同創設者、ドニー・ホワイト- インタビューシリーズ」

2016年に設立されたSatisfi Labsは、会話型AI企業のリーディングカンパニーです早期の成功は、ニューヨーク・メッツ、メイシ...

人工知能

「ゲイリー・ヒュースティス、パワーハウスフォレンジクスのオーナー兼ディレクター- インタビューシリーズ」

ゲイリー・ヒュースティス氏は、パワーハウスフォレンジックスのオーナー兼ディレクターであり、ライセンスを持つ私立探偵、...