ReLoRa GPU上で大規模な言語モデルを事前学習する

ReLoRa GPUで言語モデルを事前学習する

複数回のリセットを行うLoRa

The ReLoRa framework — Image by the author

2021年、HuらはLLMsのための低ランクアダプタ(LoRa)を提案しました。この方法は、高ランクネットワーク(LLMsの元のパラメータ)を凍結させたまま、わずかな追加パラメータ(低ランクネットワーク)のみをトレーニングすることで、大規模な言語モデル(LLMs)の微調整のコストを大幅に削減します。

LoRaでは、既存の事前学習モデルを微調整する必要があります。つまり、低ランクの制約により、良いLLMをゼロから事前学習することはできません。これにより、事前学習はほとんどの個人や組織にとって手の届かないものとなります。

このコストを削減するために、Lialinら(2023年)はReLoRaを提案しています。これは、LoRaの改良版であり、ゼロからLLMsを事前学習することができます。

この記事では、まずReLoRaの動作原理を説明します。次に、ReLoRaを説明する科学論文で発表された結果を分析し、コメントします。最後のセクションでは、コンピュータ上でReLoRaを設定して実行する方法を示します。

ライセンスに関する注意事項: ReLoRaに関するarXivで発表された科学論文は、CC BY 4.0ライセンスの下で配布されています。ReLoRaのソースコードはGitHubで公開され、商用利用が許可されるApache 2.0ライセンスで配布されています。

ReLoRa:低ランクから高ランクネットワークへ

ReLoRaの動作原理を理解するためには、まずLoRaを詳しく見てみる必要があります。

LoRaは、トレーニング後に元の凍結された高ランクネットワークにマージされる2つの異なるセットの新しいトレーニング可能なパラメータAとBを追加することで機能します。

明らかなことかもしれませんが、AとBの合計のランクは、それぞれの個々のランクの合計よりも高くなります。これを以下のように形式化することができます:

LoRaはこれらの2つのパラメータセットのみをトレーニングしました。ただし、複数回リセットしてトレーニングし、元の高ランクネットワークに連続してマージすることができれば、ネットワークの総ランクを時間とともに増やすことができます。つまり、より大きなモデルを得ることができます。

なぜLoRaはこれらのリセットを行わないのでしょうか?

なぜなら、これらのリセットを有益にするためにはいくつかの重要な障害が存在するからです…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

チューリングのミル:AIスーパーコンピューターが英国の経済エンジンを加速

産業革命の発祥地であるイギリスが、次なる革命に巨額な投資を行うことを発表しました。 イギリス政府は、世界最速のAIスパー...

人工知能

AI字幕生成ツール(短縮形式のコンテンツ用)

30秒以内で、短いコンテンツに対して絵文字付きのキャプションを生成することができます

機械学習

がん診断の革命:ディープラーニングが正確に識別し再分類することで、肝臓がんの組み合わせを強化された治療判断につながります

“` 肝臓癌は、肝細胞癌(HCC)と肝内胆管癌(ICCA)を含む原発性肝癌は、それぞれ異なる特徴を持つため、重要な課題を...

機械学習

最速の道 AIを使用して手術室でがん細胞を分析するヘルスケアスタートアップ

医療機器会社のInvenio Imagingは、手術室で組織生検を評価することができる技術を開発しており、サンプル採取後すぐに、病理...

機械学習

「Javaを使用した脳コンピュータインターフェース(BCI)アプリケーションの開発:開発者のためのガイド」

BCIsは脳デバイスの通信を可能にし、Javaはライブラリを使用して開発を支援しています課題には信号の品質と倫理が含まれます

機械学習

ロボットが「グリップ」のアップグレードを取得:AO-Graspがロボットに物を落とさない技術を教えます!

近年、ロボットは製造業から医療まで、様々な産業でますます使用されています。しかし、彼らのタスクを遂行する効果は、環境...