ReLoRa GPU上で大規模な言語モデルを事前学習する

ReLoRa GPUで言語モデルを事前学習する

複数回のリセットを行うLoRa

The ReLoRa framework — Image by the author

2021年、HuらはLLMsのための低ランクアダプタ(LoRa)を提案しました。この方法は、高ランクネットワーク(LLMsの元のパラメータ)を凍結させたまま、わずかな追加パラメータ(低ランクネットワーク)のみをトレーニングすることで、大規模な言語モデル(LLMs)の微調整のコストを大幅に削減します。

LoRaでは、既存の事前学習モデルを微調整する必要があります。つまり、低ランクの制約により、良いLLMをゼロから事前学習することはできません。これにより、事前学習はほとんどの個人や組織にとって手の届かないものとなります。

このコストを削減するために、Lialinら(2023年)はReLoRaを提案しています。これは、LoRaの改良版であり、ゼロからLLMsを事前学習することができます。

この記事では、まずReLoRaの動作原理を説明します。次に、ReLoRaを説明する科学論文で発表された結果を分析し、コメントします。最後のセクションでは、コンピュータ上でReLoRaを設定して実行する方法を示します。

ライセンスに関する注意事項: ReLoRaに関するarXivで発表された科学論文は、CC BY 4.0ライセンスの下で配布されています。ReLoRaのソースコードはGitHubで公開され、商用利用が許可されるApache 2.0ライセンスで配布されています。

ReLoRa:低ランクから高ランクネットワークへ

ReLoRaの動作原理を理解するためには、まずLoRaを詳しく見てみる必要があります。

LoRaは、トレーニング後に元の凍結された高ランクネットワークにマージされる2つの異なるセットの新しいトレーニング可能なパラメータAとBを追加することで機能します。

明らかなことかもしれませんが、AとBの合計のランクは、それぞれの個々のランクの合計よりも高くなります。これを以下のように形式化することができます:

LoRaはこれらの2つのパラメータセットのみをトレーニングしました。ただし、複数回リセットしてトレーニングし、元の高ランクネットワークに連続してマージすることができれば、ネットワークの総ランクを時間とともに増やすことができます。つまり、より大きなモデルを得ることができます。

なぜLoRaはこれらのリセットを行わないのでしょうか?

なぜなら、これらのリセットを有益にするためにはいくつかの重要な障害が存在するからです…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「2023年に知っておく必要のあるトップ10のディープラーニングツール」

コンピュータと人工知能の世界の複雑な問題には、ディープラーニングツールの支援が必要です。課題は時間とともに変化し、分...

データサイエンス

「力強いコネクティビティ:IoTにおけるエッジコンピューティングの復興」

エッジコンピューティングとIoTがリアルタイムの効率化、帯域幅の最適化、およびイノベーションのために結集します課題はまだ...

AIテクノロジー

ピカ1.0:ビデオ作成のための新しいAIモデル

世界中で生成AIに魅了されているPikaは、AIを活用した動画作成に特化したスタートアップで、Lightspeed Venture Partnersが主...

データサイエンス

AIのマスタリング:プロンプトエンジニアリングソリューションの力

私と一緒にAIプロンプトエンジニアリングの素晴らしさを発見しましょう!ユーモアのある効果的なプロンプトの制作によって、A...

機械学習

「FastEmbedをご紹介:高速かつ軽量なテキスト埋め込み生成のためのPythonライブラリ」

言葉やフレーズは、埋め込みを使用して高次元空間で効果的に表現することができます。これは、自然言語処理(NLP)の分野で重...

人工知能

「ChatGPT Meme Creator Pluginを使ってミームを作成する(ビジネスを成長させるために)」

この記事では、ChatGPT Meme Creatorプラグインを使用して、実際に面白いミームを作成する方法を詳しく説明します