ReLoRa GPU上で大規模な言語モデルを事前学習する

ReLoRa GPUで言語モデルを事前学習する

複数回のリセットを行うLoRa

The ReLoRa framework — Image by the author

2021年、HuらはLLMsのための低ランクアダプタ(LoRa)を提案しました。この方法は、高ランクネットワーク(LLMsの元のパラメータ)を凍結させたまま、わずかな追加パラメータ(低ランクネットワーク)のみをトレーニングすることで、大規模な言語モデル(LLMs)の微調整のコストを大幅に削減します。

LoRaでは、既存の事前学習モデルを微調整する必要があります。つまり、低ランクの制約により、良いLLMをゼロから事前学習することはできません。これにより、事前学習はほとんどの個人や組織にとって手の届かないものとなります。

このコストを削減するために、Lialinら(2023年)はReLoRaを提案しています。これは、LoRaの改良版であり、ゼロからLLMsを事前学習することができます。

この記事では、まずReLoRaの動作原理を説明します。次に、ReLoRaを説明する科学論文で発表された結果を分析し、コメントします。最後のセクションでは、コンピュータ上でReLoRaを設定して実行する方法を示します。

ライセンスに関する注意事項: ReLoRaに関するarXivで発表された科学論文は、CC BY 4.0ライセンスの下で配布されています。ReLoRaのソースコードはGitHubで公開され、商用利用が許可されるApache 2.0ライセンスで配布されています。

ReLoRa:低ランクから高ランクネットワークへ

ReLoRaの動作原理を理解するためには、まずLoRaを詳しく見てみる必要があります。

LoRaは、トレーニング後に元の凍結された高ランクネットワークにマージされる2つの異なるセットの新しいトレーニング可能なパラメータAとBを追加することで機能します。

明らかなことかもしれませんが、AとBの合計のランクは、それぞれの個々のランクの合計よりも高くなります。これを以下のように形式化することができます:

LoRaはこれらの2つのパラメータセットのみをトレーニングしました。ただし、複数回リセットしてトレーニングし、元の高ランクネットワークに連続してマージすることができれば、ネットワークの総ランクを時間とともに増やすことができます。つまり、より大きなモデルを得ることができます。

なぜLoRaはこれらのリセットを行わないのでしょうか?

なぜなら、これらのリセットを有益にするためにはいくつかの重要な障害が存在するからです…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「P+にお会いしましょう:テキストから画像生成における拡張テキスト反転のための豊かな埋め込み空間」

テキストから画像の合成は、テキストのプロンプト記述から現実的な画像を生成するプロセスを指します。この技術は、人工知能...

AIニュース

AIと自動化

「AIと自動化技術が優れたリターンを提供する一方で、関連するリスクを理解し最小化するために慎重に取り組む必要がある方法...

機械学習

「ジェネラティブAIおよびMLモデルを使用したメールおよびモバイル件名の最適化」

「ジェネレーティブAIとMLモデルを併用して、最大のエンゲージメントを得るために、トーンと対象読者に合わせた魅力的な件名...

機械学習

AIの聴覚スキルを革命化する:清華大学とバイトダンスが、高度なオーディオ処理のための画期的なマルチモーダルニューラルネットワーク「SALMONN」を発表

さまざまな自然言語処理アプリケーションでは、テキストベースの大規模言語モデルが印象的であり、人間に近いパフォーマンス...

機械学習

Deep learning論文の数学をPyTorchで効率的に実装する:SimCLR コントラスティブロス

PyTorch / TensorFlow のコードに深層学習論文の数学を実装することは、深層学習モデルの数学的な理解を深め、高度なプログラ...

AIニュース

「GoogleのAIの驚異的な進化、GeminiとゲームチェンジャーのStubbsを紹介します」

AIの生成を基本的なツールやサービスに統合しようという動きは、急速に変化するデジタルエコシステムにおいて活発な闘いに発...