「教師付き機械学習と集合論を通じた現実世界の時系列異常検出」

Real-world time series anomaly detection through supervised machine learning and set theory

シアトルバーク・ギルマン・トレイル

シアトル市のオープンデータを探索する

目次:

I. 問題の設定

II. 時系列データの監視型問題へのリモデリング

III. 監視型モデリングと分析

I. 問題の設定

データはこちらからダウンロードできます: シアトルバーク・ギルマン・トレイル | Kaggle

この問題の本質は、3時間後にトレイル上の総人数が500人を超える異常を検出する必要があるということです。異常は、ペデストリアンと自転車のトレイルの1時間ごとのデータが与えられているため、解決するためには3時間後のデータを予測する必要があります。

II. 時系列データの監視型問題へのリモデリング

では、データの2つのコピーを作成し、データを結合して、0時のデータが同じ行の3時にマッピングされるようにすることができます。

これはどのように行われるのでしょうか。

まず、データを取り込みます:

import pandas as pddf = pd.read_csv(r’/content/burke-gilman-trail-north-of-ne-70th-st-bike-and-ped-counter.csv’)

次に:

# dfをdataframeに変更df = pd.DataFrame(df)

df = df.fillna(0)

これを行った後、4行目から始まるデータのコピーを作成します:

# 4行目から始まるdf2を作成df2 = df[df.index >= 3]df2.head()

次に、両方のデータフレームに1から始まるインデックス列を追加します:

# df1とdf2の両方に番号の列を追加します。最初の行は1、2番目の行は2、以降の行も同様ですdf['index'] = list(range(1, len(df) + 1))df2['index'] = list(range(1, len(df2) + 1))

これを行う理由は、インデックス列で結合するためです。インデックス1はdf2のインデックス1に結合されますが、その行では左側には0時、右側には3時が表示されます…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

「AIにおけるアメリカのリーダシップの確かな基盤を築く方法」

Googleが報告書を共有します:AIにおけるアメリカのリーダーシップのための安全な基盤の構築' (Google ga hōkokusho wo kyōyū...

機械学習

オンラインで機械学習を学ぶ方法

導入 機械学習は現在高度に発展している技術の分野です。この技術により、コンピュータシステムは技術的なプログラミングなし...

機械学習

エコジェンに会ってください:生物学者や生態学者のためにリアルな鳥の歌を生成するために設計された新しいディープラーニングのアプローチ

ディープラーニングの登場は、さまざまな分野に大きな影響を与え、さまざまな領域にその影響を広げています。注目すべき応用...

機械学習

この人工知能ベースのタンパク質言語モデルは、汎用のシーケンスモデリングを解除します

人々が生命の言語を学ぶ方法は、自然言語の構文意味とタンパク質のシーケンス機能を比較することによって根本的に変わりまし...

機械学習

「MFAを超えて:オクタがエンタープライズアイデンティティを再定義する方法」

新しい解決策は、AIと自動化を活用して企業のセキュリティ姿勢を強化し、従業員の生産性を高めます

データサイエンス

「OpenAIとMetaが著作権侵害で訴えられる」

驚くべき法的な展開により、有名なコメディアンのサラ・シルバーマン、著名な作家のクリストファー・ゴールデンとリチャード...